Department of Chemistry and Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark.
J Am Chem Soc. 2024 Jul 24;146(29):20141-20146. doi: 10.1021/jacs.4c04919. Epub 2024 Jul 9.
The primary challenge of implementing DNA nanostructures in biomedical applications lies in their vulnerability to nuclease degradation and variations in ionic strength. Furthermore, the size minimization of DNA and RNA nanostructures is limited by the stability of the DNA and RNA duplexes. This study presents a solution to these problems through the use of acyclic (l)-threoninol nucleic acid (aTNA), an artificial acyclic nucleic acid, which offers enhanced resilience under physiological conditions. The high stability of homo aTNA duplexes enables the design of durable nanostructures with dimensions below 5 nm, previously unattainable due to the inherent instability of DNA structures. The assembly of a stable aTNA-based 3D cube and pyramid that involves an i-motif formation is demonstrated. In particular, the cube outperforms its DNA-based counterparts in terms of stability. We furthermore demonstrate the successful attachment of a nanobody to the aTNA cube using the favorable triplex formation of aTNA with ssDNA. The selective in vitro binding capability to human epidermal growth factor receptor 2 is demonstrated. The presented research presents the use of aTNA for the creation of smaller durable nanostructures for future medical applications. It also introduces a new method for attaching payloads to these structures, enhancing their utility in targeted therapies.
在生物医学应用中实施 DNA 纳米结构的主要挑战在于它们易受核酸酶降解和离子强度变化的影响。此外,DNA 和 RNA 纳米结构的尺寸最小化受到 DNA 和 RNA 双链体稳定性的限制。本研究通过使用非循环(l)-苏氨酸核酸(aTNA)解决了这些问题,aTNA 是一种人工非循环核酸,在生理条件下具有增强的弹性。同型 aTNA 双链体的高稳定性使得能够设计尺寸低于 5nm 的耐用纳米结构,这是以前由于 DNA 结构的固有不稳定性而无法实现的。展示了涉及 i-motif 形成的稳定的基于 aTNA 的 3D 立方体和金字塔的组装。特别是,该立方体在稳定性方面优于其基于 DNA 的对应物。我们还展示了使用 aTNA 与 ssDNA 之间的有利三联体形成将纳米抗体成功附着到 aTNA 立方体上。证明了对人表皮生长因子受体 2 的选择性体外结合能力。本研究介绍了使用 aTNA 来创建更小的耐用纳米结构,以用于未来的医学应用。它还引入了一种将有效载荷附着到这些结构上的新方法,提高了它们在靶向治疗中的实用性。