文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

在智能监狱中使用可解释的集成机器学习方法预测囚犯的自杀行为。

Predicting inmate suicidal behavior with an interpretable ensemble machine learning approach in smart prisons.

作者信息

Akhtar Khayyam, Yaseen Muhammad Usman, Imran Muhammad, Khattak Sohaib Bin Altaf, M Nasralla Moustafa

机构信息

COMSATS University Islamabad, Islamabad, Pakistan.

Prince Sultan University, Riyadh, Saudi Arabia.

出版信息

PeerJ Comput Sci. 2024 Jun 19;10:e2051. doi: 10.7717/peerj-cs.2051. eCollection 2024.


DOI:10.7717/peerj-cs.2051
PMID:38983205
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11232594/
Abstract

The convergence of smart technologies and predictive modelling in prisons presents an exciting opportunity to revolutionize the monitoring of inmate behaviour, allowing for the early detection of signs of distress and the effective mitigation of suicide risks. While machine learning algorithms have been extensively employed in predicting suicidal behaviour, a critical aspect that has often been overlooked is the interoperability of these models. Most of the work done on model interpretations for suicide predictions often limits itself to feature reduction and highlighting important contributing features only. To address this research gap, we used Anchor explanations for creating human-readable statements based on simple rules, which, to our knowledge, have never been used before for suicide prediction models. We also overcome the limitation of anchor explanations, which create weak rules on high-dimensionality datasets, by first reducing data features with the help of SHapley Additive exPlanations (SHAP). We further reduce data features through anchor interpretations for the final ensemble model of XGBoost and random forest. Our results indicate significant improvement when compared with state-of-the-art models, having an accuracy and precision of 98.6% and 98.9%, respectively. The F1-score for the best suicide ideation model appeared to be 96.7%.

摘要

智能技术与监狱中的预测模型相结合,为彻底改变对囚犯行为的监测提供了一个令人兴奋的机会,能够实现对痛苦迹象的早期检测并有效降低自杀风险。虽然机器学习算法已被广泛用于预测自杀行为,但这些模型的互操作性这一关键方面却常常被忽视。大多数关于自杀预测模型解释的工作往往仅限于特征约简和仅突出重要的促成特征。为了填补这一研究空白,我们使用了基于简单规则创建人类可读语句的锚定解释,据我们所知,这从未被用于自杀预测模型。我们还克服了锚定解释在高维数据集上创建弱规则的局限性,方法是首先借助夏普利值附加解释(SHAP)减少数据特征。我们通过对XGBoost和随机森林的最终集成模型进行锚定解释,进一步减少数据特征。与现有最佳模型相比,我们的结果显示出显著改进,准确率和精确率分别为98.6%和98.9%。最佳自杀意念模型的F1分数似乎为96.7%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cfa/11232594/f552591ca6a2/peerj-cs-10-2051-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cfa/11232594/c1e846971591/peerj-cs-10-2051-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cfa/11232594/3af074e585db/peerj-cs-10-2051-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cfa/11232594/87d53c7625f5/peerj-cs-10-2051-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cfa/11232594/b0120f2dabab/peerj-cs-10-2051-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cfa/11232594/b46f33795e52/peerj-cs-10-2051-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cfa/11232594/531e83a7395e/peerj-cs-10-2051-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cfa/11232594/a37c3443b694/peerj-cs-10-2051-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cfa/11232594/ea9ea10b9f40/peerj-cs-10-2051-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cfa/11232594/7dd76d54f94d/peerj-cs-10-2051-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cfa/11232594/2c5ba1b3ab67/peerj-cs-10-2051-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cfa/11232594/f552591ca6a2/peerj-cs-10-2051-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cfa/11232594/c1e846971591/peerj-cs-10-2051-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cfa/11232594/3af074e585db/peerj-cs-10-2051-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cfa/11232594/87d53c7625f5/peerj-cs-10-2051-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cfa/11232594/b0120f2dabab/peerj-cs-10-2051-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cfa/11232594/b46f33795e52/peerj-cs-10-2051-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cfa/11232594/531e83a7395e/peerj-cs-10-2051-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cfa/11232594/a37c3443b694/peerj-cs-10-2051-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cfa/11232594/ea9ea10b9f40/peerj-cs-10-2051-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cfa/11232594/7dd76d54f94d/peerj-cs-10-2051-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cfa/11232594/2c5ba1b3ab67/peerj-cs-10-2051-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0cfa/11232594/f552591ca6a2/peerj-cs-10-2051-g011.jpg

相似文献

[1]
Predicting inmate suicidal behavior with an interpretable ensemble machine learning approach in smart prisons.

PeerJ Comput Sci. 2024-6-19

[2]
An explainable predictive model for suicide attempt risk using an ensemble learning and Shapley Additive Explanations (SHAP) approach.

Asian J Psychiatr. 2023-1

[3]
Machine Learning-Based Prediction of Suicidal Thinking in Adolescents by Derivation and Validation in 3 Independent Worldwide Cohorts: Algorithm Development and Validation Study.

J Med Internet Res. 2024-5-17

[4]
Prediction of Suicidal Behaviors in the Middle-aged Population: Machine Learning Analyses of UK Biobank.

JMIR Public Health Surveill. 2023-2-20

[5]
Interpretable Predictive Modelling of Basalt Fiber Reinforced Concrete Splitting Tensile Strength Using Ensemble Machine Learning Methods and SHAP Approach.

Materials (Basel). 2023-6-25

[6]
Interpretable machine learning model for early prediction of 28-day mortality in ICU patients with sepsis-induced coagulopathy: development and validation.

Eur J Med Res. 2024-1-3

[7]
An interpretable machine learning prognostic system for risk stratification in oropharyngeal cancer.

Int J Med Inform. 2022-12

[8]
Predicting and Analyzing Road Traffic Injury Severity Using Boosting-Based Ensemble Learning Models with SHAPley Additive exPlanations.

Int J Environ Res Public Health. 2022-3-2

[9]
Machine learning for prediction of in-hospital mortality in lung cancer patients admitted to intensive care unit.

PLoS One. 2023

[10]
Interpretability-based machine learning for predicting the risk of death from pulmonary inflammation in Chinese intensive care unit patients.

Front Med (Lausanne). 2024-6-12

引用本文的文献

[1]
Integrating multiple feature assessment methods to identify key predictors of repeat suicide attempts in Taiwan.

BMC Psychiatry. 2025-8-29

本文引用的文献

[1]
An Efficient Ensemble Approach for Alzheimer's Disease Detection Using an Adaptive Synthetic Technique and Deep Learning.

Diagnostics (Basel). 2023-7-26

[2]
Exploring the Role of 6G Technology in Enhancing Quality of Experience for m-Health Multimedia Applications: A Comprehensive Survey.

Sensors (Basel). 2023-6-25

[3]
Common Mental Disorders in Smart City Settings and Use of Multimodal Medical Sensor Fusion to Detect Them.

Diagnostics (Basel). 2023-3-13

[4]
An explainable predictive model for suicide attempt risk using an ensemble learning and Shapley Additive Explanations (SHAP) approach.

Asian J Psychiatr. 2023-1

[5]
Suicidal behaviour prediction models using machine learning techniques: A systematic review.

Artif Intell Med. 2022-10

[6]
Comparing machine learning to a rule-based approach for predicting suicidal behavior among adolescents: Results from a longitudinal population-based survey.

J Affect Disord. 2021-12-1

[7]
Applying Machine Learning Approaches to Suicide Prediction Using Healthcare Data: Overview and Future Directions.

Front Psychiatry. 2021-8-3

[8]
The role of suicide ideation in assessing near-term suicide risk: A machine learning approach.

Psychiatry Res. 2021-10

[9]
Detecting suicidal risk using MMPI-2 based on machine learning algorithm.

Sci Rep. 2021-7-28

[10]
A machine learning analysis of risk and protective factors of suicidal thoughts and behaviors in college students.

J Am Coll Health. 2023

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索