Low May-Yin Ashlyn, Danaci David, Azzan Hassan, Jiayi Amanda Lim, Yong Gordon Wu Shun, Itskou Ioanna, Petit Camille
Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom.
The Sargent Centre for Process Systems Engineering, Imperial College London, London SW7 2AZ, United Kingdom.
Energy Fuels. 2024 Jun 18;38(13):11947-11965. doi: 10.1021/acs.energyfuels.4c01368. eCollection 2024 Jul 4.
The use of adsorbents for direct air capture (DAC) of CO is regarded as a promising and essential carbon dioxide removal technology to help meet the goals outlined by the 2015 Paris Agreement. A class of adsorbents that has gained significant attention for this application is ultramicroporous metal organic frameworks (MOFs). However, the necessary data needed to facilitate process scale evaluation of these materials is not currently available. Here, we investigate TIFSIX-3-Ni, a previously reported ultramicroporous MOF for DAC, and measure several physicochemical and equilibrium adsorption properties. We report its crystal structure, textural properties, thermal stability, specific heat capacity, CO, N, and HO equilibrium adsorption isotherms at multiple temperatures, and Ar and O isotherms at a single temperature. For CO, N, and HO, we also report isotherm model fitting parameters and calculate heats of adsorption. We assess the manufacturability and process stability of TIFSIX-3-Ni by investigating the impact of batch reproducibility, binderless pelletization, humidity, and adsorption-desorption cycling (50 cycles) on its crystal structure, textural properties, and CO adsorption. For pelletized TIFSIX-3-Ni, we also report its skeletal, pellet, and bed density, total pore volume, and pellet porosity. Overall, our data enable initial process modeling and optimization studies to evaluate TIFSIX-3-Ni for DAC at the process scale. They also highlight the possibility to pelletize TIFSIX-3-Ni and the limited stability of the MOF under humid and oxidative conditions as well as upon multiple adsorption-desorption cycles.
使用吸附剂进行二氧化碳的直接空气捕获(DAC)被视为一种有前景且至关重要的二氧化碳去除技术,有助于实现2015年《巴黎协定》所概述的目标。一类在此应用中备受关注的吸附剂是超微孔金属有机框架材料(MOF)。然而,目前尚无法获得有助于对这些材料进行工艺规模评估所需的必要数据。在此,我们研究了TIFSIX - 3 - Ni,一种先前报道的用于DAC的超微孔MOF,并测量了其多种物理化学和平衡吸附性能。我们报告了其晶体结构、织构性质、热稳定性、比热容、在多个温度下的二氧化碳、氮气和水的平衡吸附等温线,以及在单一温度下的氩气和氧气等温线。对于二氧化碳、氮气和水,我们还报告了等温线模型拟合参数并计算了吸附热。我们通过研究批次重复性、无粘结剂造粒、湿度以及吸附 - 脱附循环(50次循环)对其晶体结构、织构性质和二氧化碳吸附的影响,评估了TIFSIX - 3 - Ni的可制造性和工艺稳定性。对于造粒后的TIFSIX - 3 - Ni,我们还报告了其骨架密度、颗粒密度和床层密度、总孔体积以及颗粒孔隙率。总体而言,我们的数据能够进行初步的工艺建模和优化研究,以在工艺规模上评估TIFSIX - 3 - Ni用于DAC的性能。这些数据还突出了TIFSIX - 3 - Ni造粒的可能性,以及该MOF在潮湿和氧化条件下以及多次吸附 - 脱附循环后的有限稳定性。