Bose Saptasree, Sengupta Debabrata, Malliakas Christos D, Idrees Karam B, Xie Haomiao, Wang Xiaoliang, Barsoum Michael L, Barker Nathaniel M, Dravid Vinayak P, Islamoglu Timur, Farha Omar K
Department of Chemistry, Northwestern University 2145 Sheridan Road Evanston Illinois 60208 USA
Department of Materials Science and Engineering 2220 Campus Drive, Room 2036 Evanston Illinois 60208 USA.
Chem Sci. 2023 Aug 8;14(35):9380-9388. doi: 10.1039/d3sc02554c. eCollection 2023 Sep 13.
The increase in the atmospheric carbon dioxide level is a significant threat to our planet, and therefore the selective removal of CO from the air is a global concern. Metal-organic frameworks (MOFs) are a class of porous materials that have shown exciting potential as adsorbents for CO capture due to their high surface area and tunable properties. Among several implemented technologies, direct air capture (DAC) using MOFs is a promising strategy for achieving climate targets as it has the potential to actively reduce the atmospheric CO concentration to a safer levels. In this study, we investigate the stability and regeneration conditions of ,'-dimethylethylenediamine (mmen) appended Mg(dobpdc), a MOF with exceptional CO adsorption capacity from atmospheric air. We employed a series of systematic experiments including thermogravimetric analysis (TGA) coupled with Fourier transformed infrared (FTIR) and gas chromatography mass spectrometer (GCMS) (known as TGA-FTIR-GCMS), regeneration cycles at different conditions, control and accelerated aging experiments. We also quantified CO and HO adsorption under humid CO using a combination of data from TGA-GCMS and coulometric Karl-Fischer titration techniques. The quantification of CO and HO adsorption under humid conditions provides vital information for the design of real-world DAC systems. Our results demonstrate the stability and regeneration conditions of mmen appended Mg(dobpdc). It is stable up to 50% relative humidity when the adsorption temperature varies from 25-40 °C and the best regeneration condition can be achieved at 120 °C under dynamic vacuum and at 150 °C under N.
大气中二氧化碳水平的上升对我们的星球构成了重大威胁,因此从空气中选择性去除二氧化碳是全球关注的问题。金属有机框架(MOF)是一类多孔材料,由于其高比表面积和可调节的性质,作为捕获二氧化碳的吸附剂显示出令人兴奋的潜力。在几种已实施的技术中,使用MOF的直接空气捕获(DAC)是实现气候目标的一种有前途的策略,因为它有可能将大气中的二氧化碳浓度积极降低到更安全的水平。在本研究中,我们研究了附加有'-二甲基乙二胺(mmen)的Mg(dobpdc)的稳定性和再生条件,Mg(dobpdc)是一种从大气中具有出色二氧化碳吸附能力的MOF。我们进行了一系列系统实验,包括热重分析(TGA)与傅里叶变换红外光谱(FTIR)和气相色谱质谱联用(GCMS)(称为TGA-FTIR-GCMS)、不同条件下的再生循环、对照和加速老化实验。我们还结合TGA-GCMS和库仑卡尔费休滴定技术的数据,对潮湿二氧化碳条件下的二氧化碳和水吸附进行了定量。潮湿条件下二氧化碳和水吸附的定量为实际DAC系统的设计提供了重要信息。我们的结果证明了附加有mmen的Mg(dobpdc)的稳定性和再生条件。当吸附温度在25-40°C之间变化时,在相对湿度高达50%的情况下它是稳定的,最佳再生条件可以在动态真空下120°C和在氮气下150°C实现。