Lang Jihui, Liu Yuhan, Liu Qirong, Yang Juan, Yang Xinyu, Tang Yongbing
Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Siping, 136000, China.
Advanced Energy Storage Technology Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
Small. 2024 Nov;20(44):e2401200. doi: 10.1002/smll.202401200. Epub 2024 Jul 10.
Interfacial chemistry plays a crucial role in determining the electrochemical properties of low-temperature rechargeable batteries. Although existing interface engineering has significantly improved the capacity of rechargeable batteries operating at low temperatures, challenges such as sharp voltage drops and poor high-rate discharge capabilities continue to limit their applications in extreme environments. In this study, an energy-level-adaptive design strategy for electrolytes to regulate interfacial chemistry in low-temperature Li||graphite dual-ion batteries (DIBs) is proposed. This strategy enables the construction of robust interphases with superior ion-transfer kinetics. On the graphite cathode, the design endues the cathode interface with solvent/anion-coupled interfacial chemistry, which yields an nitrogen/phosphor/sulfur/fluorin (N/P/S/F)-containing organic-rich interphase to boost anion-transfer kinetics and maintains excellent interfacial stability. On the Li metal anode, the anion-derived interfacial chemistry promotes the formation of an inorganic-dominant LiF-rich interphase, which effectively suppresses Li dendrite growth and improves the Li plating/stripping kinetics at low temperatures. Consequently, the DIBs can operate within a wide temperature range, spanning from -40 to 45 °C. At -40 °C, the DIB exhibits exceptional performance, delivering 97.4% of its room-temperature capacity at 1 C and displaying an extraordinarily high-rate discharge capability with 62.3% capacity retention at 10 C. This study demonstrates a feasible strategy for the development of high-power and low-temperature rechargeable batteries.
界面化学在决定低温可充电电池的电化学性能方面起着至关重要的作用。尽管现有的界面工程显著提高了低温下运行的可充电电池的容量,但诸如急剧的电压降和较差的高倍率放电能力等挑战仍然限制了它们在极端环境中的应用。在本研究中,提出了一种用于电解质的能级自适应设计策略,以调节低温锂||石墨双离子电池(DIBs)中的界面化学。该策略能够构建具有优异离子转移动力学的稳健界面。在石墨阴极上,该设计赋予阴极界面溶剂/阴离子耦合的界面化学性质,从而产生富含氮/磷/硫/氟(N/P/S/F)的有机丰富界面,以提高阴离子转移动力学并保持优异的界面稳定性。在锂金属阳极上,源自阴离子的界面化学促进了富含无机主导的LiF的界面的形成,这有效地抑制了锂枝晶的生长并改善了低温下的锂电镀/剥离动力学。因此,DIBs可以在-40至45°C的宽温度范围内运行。在-40°C时,DIB表现出卓越的性能,在1C下可提供其室温容量的97.4%,并在10C下显示出极高的倍率放电能力,容量保持率为62.3%。本研究展示了一种开发高功率低温可充电电池的可行策略。