Suppr超能文献

利用肠道微生物组特征作为相关性状对猪肉品质性状进行多性状基因组预测。

Multiple-trait genomic prediction for swine meat quality traits using gut microbiome features as a correlated trait.

作者信息

Tiezzi Francesco, Schwab Clint, Shull Caleb, Maltecca Christian

机构信息

Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy.

AcuFast LLC, Navasota, Texas, USA.

出版信息

J Anim Breed Genet. 2025 Jan;142(1):102-117. doi: 10.1111/jbg.12887. Epub 2024 Jul 10.

Abstract

Traits such as meat quality and composition are becoming valuable in modern pork production; however, they are difficult to include in genetic evaluations because of the high phenotyping costs. Combining genomic information with multiple-trait indirect selection with cheaper indicator traits is an alternative for continued cost-effective genetic improvement. Additionally, gut microbiome information is becoming more affordable to measure using targeted rRNA sequencing, and its applications in animal breeding are becoming relevant. In this paper, we investigated the usefulness of microbial information as a correlated trait in selecting meat quality in swine. This study incorporated phenotypic data encompassing marbling, colour, tenderness, loin muscle and backfat depth, along with the characterization of gut (rectal) microbiota through 16S rRNA sequencing at three distinct time points of the animal's growth curve. Genetic progress estimation and cross-validation were employed to evaluate the utility of utilizing host genomic and gut microbiota information for selecting expensive-to-record traits in crossbred individuals. Initial steps involved variance components estimation using multiple-trait models on a training dataset, where the top 25 associated operational taxonomic units (OTU) for each meat quality trait and time point were included. The second step compared the predictive ability of multiple-trait models incorporating different numbers of OTU with single-trait models in a validation set. Results demonstrated the advantage of including genomic information for some traits, while in some instances, gut microbial information proved advantageous, namely, for marbling and pH. The study suggests further investigation into the shared genetic architecture between microbial features and traits, considering microbial data's compositional and high-dimensional nature. This research proposes a straightforward method to enhance swine breeding programs for improving costly-to-record traits like meat quality by incorporating gut microbiome information.

摘要

在现代猪肉生产中,肉质和成分等性状正变得越来越重要;然而,由于表型分析成本高昂,这些性状难以纳入遗传评估。将基因组信息与具有更廉价指示性状的多性状间接选择相结合,是持续进行具有成本效益的遗传改良的一种替代方法。此外,利用靶向rRNA测序来测量肠道微生物组信息的成本越来越低,其在动物育种中的应用也越来越受到关注。在本文中,我们研究了微生物信息作为相关性状在猪的肉质选择中的有用性。本研究纳入了包括大理石纹、颜色、嫩度、腰大肌和背膘厚度的表型数据,以及在动物生长曲线的三个不同时间点通过16S rRNA测序对肠道(直肠)微生物群进行的表征。采用遗传进展估计和交叉验证来评估利用宿主基因组和肠道微生物群信息选择杂交个体中记录成本高昂的性状的效用。初始步骤包括在训练数据集上使用多性状模型估计方差成分,其中包括每个肉质性状和时间点的前25个相关操作分类单元(OTU)。第二步在验证集中比较了包含不同数量OTU的多性状模型与单性状模型的预测能力。结果表明,对于某些性状,纳入基因组信息具有优势,而在某些情况下,肠道微生物信息被证明具有优势,即对于大理石纹和pH值。该研究建议进一步研究微生物特征与性状之间共享的遗传结构,同时考虑微生物数据的组成性质和高维性质。本研究提出了一种简单的方法,通过纳入肠道微生物组信息来改进猪的育种计划,以改善肉质等记录成本高昂的性状。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a09/11629054/b6c77c277b5d/JBG-142-102-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验