Cancept Therapeutics Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Lalpur, Amarkantak, Anuppur, Madhya Pradesh, 484887, India.
LAQV/REQUIMTE, BioSIM-Departamento de Biomedicina, Faculdade de Medicina, Universidade Do Porto, 4200-319, Porto, Portugal.
J Mol Model. 2024 Jul 10;30(8):261. doi: 10.1007/s00894-024-06061-5.
Multiwalled carbon nanotubes (MWCNTs) functionalized with lysine via 1,3-dipolar cycloaddition and conjugated to galactose or mannose are potential nanocarriers that can effectively bind to the lectin receptor in MDA-MB-231 or MCF-7 breast cancer cells. In this work, a method based on molecular dynamics (MD) simulation was used to predict the interaction of these functionalized MWCNTs with doxorubicin and obtain structural evidence that allows a better understanding of the drug loading and release process. The MD simulations showed that while doxorubicin only interacted with pristine MWCNTs through π-π stacking interactions, functionalized MWCNTs were also able to establish hydrogen bonds, suggesting that the functionalized groups improve doxorubicin loading. Moreover, the elevated adsorption levels observed for functionalized nanotubes further support this enhancement in loading efficiency. MD simulations also shed light on the intratumoral pH-specific release of doxorubicin from functionalized MWCNTs, which is induced by protonation of the daunosamine moiety. The simulations show that this change in protonation leads to a lower absorption of doxorubicin to the MWCNTs. The MD studies were then experimentally validated, where functionalized MWCNTs showed improved dispersion in aqueous medium compared to pristine MWCNTs and, in agreement with the computational predictions, increased drug loading capacity. Doxorubicin-loaded functionalized MWCNTs demonstrated specific release of doxorubicin in tumor microenvironment (pH = 5.0) with negligible release in the physiological pH (pH = 7.4). Furthermore, doxorubicin-free MWNCT nanoformulations exhibited insignificant cytotoxicity. The experimental studies yielded nearly identical results to the MD studies, underlining the usefulness of the method. Our functionalized MWCNTs represent promising non-toxic nanoplatforms with enhanced aqueous dispersibility and the potential for conjugation with ligands for targeted delivery of anti-cancer drugs to breast cancer cells.
The computational model of a pristine carbon nanotube was created with the buildCstruct 1.2 Python script. The lysinated functionalized groups were added with PyMOL and VMD. The carbon nanotubes and doxorubicin molecules were parameterized using the general AMBER force field, and RESP charges were determined using Gaussian 09. Molecular dynamics simulations were carried out with the AMBER 20 software package. Adsorption levels were calculated using the water-shell function of cpptraj. Cytotoxicity was evaluated via a MTT assay using MDA-MB-231 and MCF-7 breast cancer cells. Drug uptake of doxorubicin and doxorubicin-loaded MWCNTs was measured by fluorescence microscopy.
通过 1,3-偶极环加成反应将赖氨酸官能化的多壁碳纳米管(MWCNTs)与半乳糖或甘露糖缀合,是有效的纳米载体,可与 MDA-MB-231 或 MCF-7 乳腺癌细胞中的凝集素受体有效结合。在这项工作中,使用基于分子动力学(MD)模拟的方法来预测这些功能化 MWCNTs 与阿霉素的相互作用,并获得结构证据,以更好地理解药物加载和释放过程。MD 模拟表明,虽然阿霉素仅通过 π-π 堆积相互作用与原始 MWCNTs 相互作用,但功能化 MWCNTs 还能够建立氢键,表明功能化基团提高了阿霉素的负载能力。此外,观察到功能化纳米管的吸附水平升高,进一步支持了这种负载效率的提高。MD 模拟还揭示了功能化 MWCNTs 中阿霉素在肿瘤内 pH 特异性释放,这是由 daunosamine 部分的质子化引起的。模拟表明,这种质子化的变化导致阿霉素对 MWCNTs 的吸收降低。然后对 MD 研究进行了实验验证,结果表明,与原始 MWCNTs 相比,功能化 MWCNTs 在水性介质中的分散性得到了改善,并且与计算预测一致,载药能力得到了提高。负载阿霉素的功能化 MWCNTs 在肿瘤微环境(pH=5.0)中表现出阿霉素的特异性释放,而在生理 pH(pH=7.4)中释放可忽略不计。此外,无阿霉素的 MWCNT 纳米制剂表现出轻微的细胞毒性。实验研究结果与 MD 研究结果几乎相同,突出了该方法的有用性。我们的功能化 MWCNTs 代表了有前途的无毒纳米平台,具有增强的水性分散性,并且具有与配体结合的潜力,可将抗癌药物靶向递送至乳腺癌细胞。
使用 buildCstruct 1.2 Python 脚本创建原始碳纳米管的计算模型。用 PyMOL 和 VMD 添加赖氨酸功能化基团。使用通用 AMBER 力场参数化碳纳米管和阿霉素分子,并使用 Gaussian 09 确定 RESP 电荷。使用 AMBER 20 软件包进行分子动力学模拟。使用 cpptraj 的水壳函数计算吸附水平。通过 MDA-MB-231 和 MCF-7 乳腺癌细胞的 MTT 测定评估细胞毒性。通过荧光显微镜测量阿霉素和负载阿霉素的 MWCNTs 的摄取。