Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, USA.
Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA.
Nanoscale Horiz. 2024 Aug 19;9(9):1543-1556. doi: 10.1039/d4nh00010b.
Monitoring of pesticide concentration distribution across farm fields is crucial to ensure precise and efficient application while preventing overuse or untreated areas. Inspired by nature's wettability patterns, we developed a biomimetic fern leaf pesticide collection patch using laser-induced graphene (LIG) alongside an external electrochemical LIG biosensor. This "collect-and-sense" system allows for rapid pesticide spray monitoring in the farm field. The LIG is synthesized and patterned on polyimide through a high-throughput gantry-based CO laser process, making it amenable to scalable manufacturing. The resulting LIG-based leaf exhibits a remarkable water collection capacity, harvesting spray mist/fog at a rate approximately 11 times greater than a natural ostrich fern leaf when the collection is normalized to surface area. The developed three-electrode LIG pesticide biosensor, featuring a working electrode functionalized with electrodeposited platinum nanoparticles (PtNPs) and the enzyme glycine oxidase, displayed a linear range of 10-260 μM, a detection limit of 1.15 μM, and a sensitivity of 5.64 nA μM for the widely used herbicide glyphosate. Also, a portable potentiostat with a user-friendly interface was developed for remote operation, achieving an accuracy of up to 97%, when compared to a standard commercial benchtop potentiostat. The LIG "collect-and-sense" system can consistently collect and monitor glyphosate spray after 24-48 hours of spraying, a time that corresponds to the restricted-entry interval required to enter most farm fields after pesticide spraying. Hence, this innovative "collect-and-sense" system not only advances precision agriculture by enabling monitoring and mapping of pesticide distribution but also holds the potential to significantly reduce environmental impact, enhance crop management practices, and contribute to the sustainable and efficient use of agrochemicals in modern agriculture.
监测农田中农药浓度分布对于确保精确、高效的施药,同时防止过度使用或未处理区域至关重要。受自然润湿性模式的启发,我们使用激光诱导石墨烯(LIG)和外部电化学 LIG 生物传感器开发了一种仿生蕨类植物叶片农药收集贴片。这种“收集-感应”系统允许在农田中快速监测农药喷雾。LIG 通过基于龙门的 CO 激光工艺在聚酰亚胺上合成和图案化,使其易于规模化制造。基于 LIG 的叶片具有出色的集水能力,在集水面积归一化的情况下,收集喷雾雾滴/雾的速度比天然鸵鸟蕨叶片快约 11 倍。开发的三电极 LIG 农药生物传感器,其工作电极功能化有电沉积的铂纳米颗粒(PtNPs)和酶甘氨酸氧化酶,具有 10-260 μM 的线性范围、1.15 μM 的检测限和 5.64 nA μM 的灵敏度,适用于广泛使用的除草剂草甘膦。此外,还开发了一种带有用户友好界面的便携式电化学工作站,用于远程操作,与标准商业台式电化学工作站相比,其准确度高达 97%。LIG“收集-感应”系统在喷雾后 24-48 小时内可以持续收集和监测草甘膦喷雾,这一时间对应于大多数农田在施药后进入的受限进入间隔。因此,这种创新的“收集-感应”系统不仅通过监测和绘制农药分布来推进精准农业,还有潜力显著减少环境影响、增强作物管理实践,并为现代农业中农用化学品的可持续和高效利用做出贡献。