Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
Proc Natl Acad Sci U S A. 2024 Jul 16;121(29):e2404060121. doi: 10.1073/pnas.2404060121. Epub 2024 Jul 10.
DNA aptamers have emerged as novel molecular tools in disease theranostics owing to their high binding affinity and specificity for protein targets, which rely on their ability to fold into distinctive three-dimensional (3D) structures. However, delicate atomic interactions that shape the 3D structures are often ignored when designing and modeling aptamers, leading to inefficient functional optimization. Challenges persist in determining high-resolution aptamer-protein complex structures. Moreover, the experimentally determined 3D structures of DNA molecules with exquisite functions remain scarce. These factors impede our comprehension and optimization of some important DNA aptamers. Here, we performed a streamlined solution NMR-based structural investigation on the 41-nt sgc8c, a prominent DNA aptamer used to target membrane protein tyrosine kinase 7, for cancer theranostics. We show that sgc8c prefolds into an intricate three-way junction (3WJ) structure stabilized by long-range tertiary interactions and extensive base-base stackings. Delineated by NMR chemical shift perturbations, site-directed mutagenesis, and 3D structural information, we identified essential nucleotides constituting the key functional elements of sgc8c that are centralized at the core of 3WJ. Leveraging the well-established structure-function relationship, we efficiently engineered two sgc8c variants by modifying the apical loop and introducing -DNA base pairs to simultaneously enhance thermostability, biostability, and binding affinity for both protein and cell targets, a feat not previously attained despite extensive efforts. This work showcases a simplified NMR-based approach to comprehend and optimize sgc8c without acquiring the complex structure, and offers principles for the sophisticated structure-function organization of DNA molecules.
DNA 适体作为新型分子工具在疾病治疗诊断中得到了广泛应用,因为它们对蛋白质靶标具有高的结合亲和力和特异性,这依赖于它们折叠成独特的三维(3D)结构的能力。然而,在设计和建模适体时,往往忽略了形成 3D 结构的精细原子相互作用,导致功能优化效率低下。确定高分辨率适体-蛋白质复合物结构仍然存在挑战。此外,具有精致功能的 DNA 分子的实验确定的 3D 结构仍然稀缺。这些因素阻碍了我们对一些重要 DNA 适体的理解和优化。在这里,我们对用于癌症治疗诊断的靶向膜蛋白酪氨酸激酶 7 的 41 个核苷酸的 sgc8c 进行了简化的基于溶液 NMR 的结构研究。我们表明,sgc8c 优先折叠成一种复杂的三链结(3WJ)结构,这种结构由远程三级相互作用和广泛的碱基堆积稳定。通过 NMR 化学位移扰动、定点突变和 3D 结构信息来描绘,我们确定了构成 sgc8c 关键功能元件的必需核苷酸,这些核苷酸集中在 3WJ 的核心。利用成熟的结构-功能关系,我们通过修饰顶端环并引入 -DNA 碱基对,有效地设计了两个 sgc8c 变体,同时提高了热稳定性、生物稳定性和对蛋白质和细胞靶标的结合亲和力,尽管进行了广泛的努力,但以前没有实现这一目标。这项工作展示了一种简化的基于 NMR 的方法来理解和优化 sgc8c,而无需获得复杂的结构,并为 DNA 分子的复杂结构-功能组织提供了原理。