Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan, People's Republic of China.
Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Foshan, People's Republic of China.
J Neurophysiol. 2024 Sep 1;132(3):809-821. doi: 10.1152/jn.00029.2024. Epub 2024 Jul 10.
Efficient communication and regulation are crucial for advancing brain-computer interfaces (BCIs), with the steady-state visual-evoked potential (SSVEP) paradigm demonstrating high accuracy and information transfer rates. However, the conventional SSVEP paradigm encounters challenges related to visual occlusion and fatigue. In this study, we propose an improved SSVEP paradigm that addresses these issues by lowering the contrast of visual stimulation. The improved paradigms outperform the traditional paradigm in the experiments, significantly reducing the visual stimulation of the SSVEP paradigm. Furthermore, we apply this enhanced paradigm to a BCI navigation system, enabling two-dimensional navigation of unmanned aerial vehicles (UAVs) through a first-person perspective. Experimental results indicate the enhanced SSVEP-based BCI system's accuracy in performing navigation and search tasks. Our findings highlight the feasibility of the enhanced SSVEP paradigm in mitigating visual occlusion and fatigue issues, presenting a more intuitive and natural approach for BCIs to control external equipment. In this article, we proposed an improved steady-state visual-evoked potential (SSVEP) paradigm and constructed an SSVEP-based brain-computer interface (BCI) system to navigate the unmanned aerial vehicle (UAV) in two-dimensional (2-D) physical space. We proposed a modified method for evaluating visual fatigue including subjective score and objective indices. The results indicated that the improved SSVEP paradigm could effectively reduce visual fatigue while maintaining high accuracy.
有效的沟通和调节对于推进脑机接口(BCI)至关重要,稳态视觉诱发电位(SSVEP)范式以其高精度和信息传输率而表现出色。然而,传统的 SSVEP 范式在视觉遮挡和疲劳方面存在挑战。在这项研究中,我们提出了一种改进的 SSVEP 范式,通过降低视觉刺激对比度来解决这些问题。实验表明,改进后的范式在视觉刺激方面明显优于传统范式,显著降低了 SSVEP 范式的视觉刺激。此外,我们将这一增强的范式应用于 BCI 导航系统,实现了通过第一人称视角对无人机(UAV)的二维导航。实验结果表明,基于增强 SSVEP 的 BCI 系统在执行导航和搜索任务方面具有较高的准确性。我们的研究结果突出了增强 SSVEP 范式在减轻视觉遮挡和疲劳问题方面的可行性,为 BCI 控制外部设备提供了一种更直观、自然的方法。本文提出了一种改进的稳态视觉诱发电位(SSVEP)范式,并构建了一个基于 SSVEP 的脑机接口(BCI)系统,以在二维(2-D)物理空间中对无人机(UAV)进行导航。提出了一种改进的视觉疲劳评估方法,包括主观评分和客观指标。结果表明,改进的 SSVEP 范式可以在保持高精度的同时有效减轻视觉疲劳。