Suppr超能文献

[基于稳态视觉诱发电位的可穿戴式脑机接口在现实场景中的性能评估]

[Performance evaluation of a wearable steady-state visual evoked potential based brain-computer interface in real-life scenario].

作者信息

Li Xiaodong, Cao Xiang, Wang Junlin, Zhu Weijie, Huang Yong, Wan Feng, Hu Yong

机构信息

Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, P. R. China.

Orthopedic Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong 518053, P. R. China.

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2025 Jun 25;42(3):464-472. doi: 10.7507/1001-5515.202310069.

Abstract

Brain-computer interface (BCI) has high application value in the field of healthcare. However, in practical clinical applications, convenience and system performance should be considered in the use of BCI. Wearable BCIs are generally with high convenience, but their performance in real-life scenario needs to be evaluated. This study proposed a wearable steady-state visual evoked potential (SSVEP)-based BCI system equipped with a small-sized electroencephalogram (EEG) collector and a high-performance training-free decoding algorithm. Ten healthy subjects participated in the test of BCI system under simplified experimental preparation. The results showed that the average classification accuracy of this BCI was 94.10% for 40 targets, and there was no significant difference compared to the dataset collected under the laboratory condition. The system achieved a maximum information transfer rate (ITR) of 115.25 bit/min with 8-channel signal and 98.49 bit/min with 4-channel signal, indicating that the 4-channel solution can be used as an option for the few-channel BCI. Overall, this wearable SSVEP-BCI can achieve good performance in real-life scenario, which helps to promote BCI technology in clinical practice.

摘要

脑机接口(BCI)在医疗保健领域具有很高的应用价值。然而,在实际临床应用中,使用BCI时应考虑便利性和系统性能。可穿戴式BCI通常具有很高的便利性,但其在现实生活场景中的性能需要评估。本研究提出了一种基于稳态视觉诱发电位(SSVEP)的可穿戴式BCI系统,该系统配备了小型脑电图(EEG)采集器和高性能免训练解码算法。十名健康受试者在简化的实验准备下参与了BCI系统测试。结果表明,该BCI对40个目标的平均分类准确率为94.10%,与在实验室条件下采集的数据集相比无显著差异。该系统在8通道信号下实现了115.25比特/分钟的最大信息传输率(ITR),在4通道信号下实现了98.49比特/分钟的最大信息传输率,表明4通道解决方案可作为少通道BCI的一种选择。总体而言,这种可穿戴式SSVEP-BCI在现实生活场景中可实现良好性能,有助于推动BCI技术在临床实践中的应用。

相似文献

本文引用的文献

3
Online Adaptation Boosts SSVEP-Based BCI Performance.在线自适应提高基于 SSVEP 的脑机接口性能。
IEEE Trans Biomed Eng. 2022 Jun;69(6):2018-2028. doi: 10.1109/TBME.2021.3133594. Epub 2022 May 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验