Castro Domingos, Grayden David B, Meffin Hamish, Spencer Martin
Neuroengineering and Computational Neuroscience Lab, i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.
Faculty of Engineering of the University of Porto, Porto, Portugal.
J Neural Eng. 2024 Jul 25;21(4). doi: 10.1088/1741-2552/ad6186.
The visual perception provided by retinal prostheses is limited by the overlapping current spread of adjacent electrodes. This reduces the spatial resolution attainable with unipolar stimulation. Conversely, simultaneous multipolar stimulation guided by the measured neural responses-neural activity shaping (NAS)-can attenuate excessive spread of excitation allowing for more precise control over the pattern of neural activation. However, defining effective multipolar stimulus patterns is a challenging task. Previous attempts focused on analytical solutions based on an assumed linear nonlinear model of retinal response; an analytical model inversion (AMI) approach. Here, we propose a model-free solution for NAS, using artificial neural networks (ANNs) that could be trained with data acquired from the implant.Our method consists of two ANNs trained sequentially. The measurement predictor network (MPN) is trained on data from the implant and is used to predict how the retina responds to multipolar stimulation. The stimulus generator network is trained on a large dataset of natural images and uses the trained MPN to determine efficient multipolar stimulus patterns by learning its inverse model. We validate our methodusing a realistic model of retinal response to multipolar stimulation.We show that our ANN-based NAS approach produces sharper retinal activations than the conventional unipolar stimulation strategy. As a theoretical bench-mark of optimal NAS results, we implemented AMI stimulation by inverting the model used to simulate the retina. Our ANN strategy produced equivalent results to AMI, while not being restricted to any specific type of retina model and being three orders of magnitude more computationally efficient.Our novel protocol provides a method for efficient and personalized retinal stimulation, which may improve the visual experience and quality of life of retinal prosthesis users.
视网膜假体所提供的视觉感知受到相邻电极电流重叠扩散的限制。这降低了单极刺激可实现的空间分辨率。相反,由测量到的神经反应引导的同步多极刺激——神经活动塑形(NAS)——可以减弱过度的兴奋扩散,从而更精确地控制神经激活模式。然而,定义有效的多极刺激模式是一项具有挑战性的任务。先前的尝试集中在基于假设的视网膜反应线性 - 非线性模型的解析解;一种解析模型反演(AMI)方法。在这里,我们提出了一种用于NAS的无模型解决方案,使用可以通过从植入物获取的数据进行训练的人工神经网络(ANN)。我们的方法由两个顺序训练的ANN组成。测量预测器网络(MPN)根据植入物的数据进行训练,并用于预测视网膜对多极刺激的反应。刺激发生器网络在大量自然图像数据集上进行训练,并使用训练好的MPN通过学习其逆模型来确定有效的多极刺激模式。我们使用视网膜对多极刺激反应的真实模型验证了我们的方法。我们表明,我们基于ANN的NAS方法比传统的单极刺激策略产生更清晰的视网膜激活。作为最佳NAS结果的理论基准,我们通过对用于模拟视网膜的模型进行反演来实现AMI刺激。我们的ANN策略产生了与AMI等效的结果,但不限于任何特定类型的视网膜模型,并且计算效率提高了三个数量级。我们的新方案提供了一种高效且个性化的视网膜刺激方法,这可能会改善视网膜假体使用者的视觉体验和生活质量。