Suppr超能文献

陷入放射肿瘤病例率(ROCR)与困境之间:改进提议的放射肿瘤替代支付模式。

Caught Between a Radiation Oncology Case Rate (ROCR) and a Hard Place: Improving Proposed Radiation Oncology Alternative Payment Models.

作者信息

Bush Aaron, Liu Chi-Mei, Rula Elizabeth Y, Luh Join, Yu Nathan Y, Laack Nadia, Attia Albert, Waddle Mark

机构信息

Mayo Clinic, Jacksonville, Florida.

Neiman Health Policy Institute, Reston, Virginia.

出版信息

Int J Radiat Oncol Biol Phys. 2024 Dec 1;120(5):1214-1225. doi: 10.1016/j.ijrobp.2024.06.034. Epub 2024 Jul 9.

Abstract

PURPOSE

The Radiation Oncology Case Rate (ROCR) aims to shift radiation reimbursement from fee-for-service (FFS) to bundled payments, which would decouple fractionation from reimbursement in the United States. This study compares historical reimbursement rates from 3 large centers and a national Medicare sample with proposed base rates from ROCR. It also tests the impact of methodological inclusion of treatment and disease characteristics to determine if any variables are associated with greater rate differences that may lead to inequitable reimbursement.

METHODS AND MATERIALS

Using Mayo Clinic electronic medical record data from 2017 to 2020 and part B claims from the Medicare 5% research identifiable files, episodic 90-day historical reimbursement rates for 15 cancer types were calculated per the ROCR payment methodology. Mayo Clinic reimbursement rates were stratified by disease and treatment characteristics and multiple linear regression was performed to assess the association of these variables on historical episode reimbursement rates.

RESULTS

From Mayo Clinic, 3498 patient episodes were included and 480,526 from the research identifiable files. From both data sets, 25% of brain metastases and 13% of bone metastases episodes included ≥2 treatment courses with an average of 51 days between courses. Accounting for all 15 cancer types, ROCR base rates resulted in an average -2.4% and -2.9% reduction in rates for Mayo Clinic and the research identifiable files respectively compared with historical reimbursement. On multivariate analysis of Mayo Clinic data, treatment intent (curative vs palliative) was associated with higher historical reimbursement (+$477 to +$7417; P ≤.05) for 12 out of 12 applicable cancer types. Stage (III-IV vs I-II) was associated with higher historical reimbursement (+$1169 to +$3917; P ≤ .05) for 8 out of 12 applicable cancer types.

CONCLUSIONS

Our data suggest ROCR base rates introduce an average ≤3% reimbursement rate decrease compared with historical FFS reimbursement per cancer type, which could produce the Medicare savings required for congressional approval of ROCR. Estimating comparisons with future FFS reimbursement would require consideration of additional factors such as the increased utilization of hypofractionation, proposed FFS rate cuts, and inflationary updates. A distinct rate and shortened episode duration (≤30 days) should be considered for palliative episodes. Applying a base rate modifier per cancer stage may mitigate disproportionate reductions in reimbursement for facilities with a higher volume of curative advanced-stage patients such as freestanding centers in rural settings.

摘要

目的

放射肿瘤病例费率(ROCR)旨在将放射治疗报销方式从按服务收费(FFS)转变为捆绑支付,这将使美国的分次放疗与报销脱钩。本研究将3个大型中心和一个全国医疗保险样本的历史报销率与ROCR提议的基础费率进行了比较。它还测试了纳入治疗和疾病特征的方法的影响,以确定是否有任何变量与可能导致报销不公平的更大费率差异相关。

方法和材料

使用梅奥诊所2017年至2020年的电子病历数据以及医疗保险5%研究可识别文件中的B部分索赔数据,按照ROCR支付方法计算了15种癌症类型的90天阶段性历史报销率。梅奥诊所的报销率按疾病和治疗特征进行分层,并进行多元线性回归以评估这些变量与历史阶段性报销率之间的关联。

结果

梅奥诊所纳入了3498例患者病例,研究可识别文件纳入了480526例。在两个数据集中,25%的脑转移瘤病例和13%的骨转移瘤病例包括≥2个疗程,疗程之间平均间隔51天。对于所有15种癌症类型,与历史报销相比,ROCR基础费率使梅奥诊所和研究可识别文件的费率分别平均降低了2.4%和2.9%。对梅奥诊所数据进行多变量分析时,对于12种适用癌症类型中的12种,治疗意图(根治性与姑息性)与较高的历史报销相关(增加477美元至7417美元;P≤0.05)。对于12种适用癌症类型中的8种,分期(III-IV期与I-II期)与较高的历史报销相关(增加1169美元至3917美元;P≤0.05)。

结论

我们的数据表明,与每种癌症类型的历史FFS报销相比,ROCR基础费率使报销率平均降低≤3%,这可能产生国会批准ROCR所需的医疗保险节省。估计与未来FFS报销的比较需要考虑其他因素,如短程放疗使用的增加、提议的FFS费率削减和通胀调整。对于姑息性疗程,应考虑采用不同的费率和缩短的疗程持续时间(≤30天)。对于治疗晚期患者数量较多的机构,如农村地区的独立中心,根据癌症分期应用基础费率修正因子可能会减轻报销减少不成比例的情况。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验