Suppr超能文献

迈向可重复的计算药物发现。

Towards reproducible computational drug discovery.

作者信息

Schaduangrat Nalini, Lampa Samuel, Simeon Saw, Gleeson Matthew Paul, Spjuth Ola, Nantasenamat Chanin

机构信息

Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, 10700, Bangkok, Thailand.

Department of Pharmaceutical Biosciences, Uppsala University, 751 24, Uppsala, Sweden.

出版信息

J Cheminform. 2020 Jan 28;12(1):9. doi: 10.1186/s13321-020-0408-x.

Abstract

The reproducibility of experiments has been a long standing impediment for further scientific progress. Computational methods have been instrumental in drug discovery efforts owing to its multifaceted utilization for data collection, pre-processing, analysis and inference. This article provides an in-depth coverage on the reproducibility of computational drug discovery. This review explores the following topics: (1) the current state-of-the-art on reproducible research, (2) research documentation (e.g. electronic laboratory notebook, Jupyter notebook, etc.), (3) science of reproducible research (i.e. comparison and contrast with related concepts as replicability, reusability and reliability), (4) model development in computational drug discovery, (5) computational issues on model development and deployment, (6) use case scenarios for streamlining the computational drug discovery protocol. In computational disciplines, it has become common practice to share data and programming codes used for numerical calculations as to not only facilitate reproducibility, but also to foster collaborations (i.e. to drive the project further by introducing new ideas, growing the data, augmenting the code, etc.). It is therefore inevitable that the field of computational drug design would adopt an open approach towards the collection, curation and sharing of data/code.

摘要

实验的可重复性一直是阻碍科学进一步发展的长期因素。计算方法在药物发现工作中发挥了重要作用,因为它在数据收集、预处理、分析和推理方面有多种用途。本文深入探讨了计算药物发现的可重复性。本综述探讨了以下主题:(1)可重复性研究的当前技术水平,(2)研究文档(如电子实验室笔记本、Jupyter笔记本等),(3)可重复性研究的科学(即与可复制性、可重用性和可靠性等相关概念的比较和对比),(4)计算药物发现中的模型开发,(5)模型开发和部署中的计算问题,(6)简化计算药物发现协议的用例场景。在计算学科中,共享用于数值计算的数据和编程代码已成为惯例,这不仅有助于提高可重复性,还能促进合作(即通过引入新想法、增加数据、扩充代码等推动项目进一步发展)。因此,计算药物设计领域不可避免地会对数据/代码的收集、管理和共享采取开放的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58fd/6988305/217fdbb83510/13321_2020_408_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验