Department of Otorhinolaryngology, Shanghai Sixth People's Hospital and Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Program in Neuroscience and Mental Health, SickKids Research Institute, Toronto, Ontario, Canada.
Nature. 2024 Jul;631(8022):826-834. doi: 10.1038/s41586-024-07684-7. Epub 2024 Jul 10.
Glutamate is traditionally viewed as the first messenger to activate NMDAR (N-methyl-D-aspartate receptor)-dependent cell death pathways in stroke, but unsuccessful clinical trials with NMDAR antagonists implicate the engagement of other mechanisms. Here we show that glutamate and its structural analogues, including NMDAR antagonist L-AP5 (also known as APV), robustly potentiate currents mediated by acid-sensing ion channels (ASICs) associated with acidosis-induced neurotoxicity in stroke. Glutamate increases the affinity of ASICs for protons and their open probability, aggravating ischaemic neurotoxicity in both in vitro and in vivo models. Site-directed mutagenesis, structure-based modelling and functional assays reveal a bona fide glutamate-binding cavity in the extracellular domain of ASIC1a. Computational drug screening identified a small molecule, LK-2, that binds to this cavity and abolishes glutamate-dependent potentiation of ASIC currents but spares NMDARs. LK-2 reduces the infarct volume and improves sensorimotor recovery in a mouse model of ischaemic stroke, reminiscent of that seen in mice with Asic1a knockout or knockout of other cation channels. We conclude that glutamate functions as a positive allosteric modulator for ASICs to exacerbate neurotoxicity, and preferential targeting of the glutamate-binding site on ASICs over that on NMDARs may be strategized for developing stroke therapeutics lacking the psychotic side effects of NMDAR antagonists.
谷氨酸传统上被视为激活中风时 NMDAR(N-甲基-D-天冬氨酸受体)依赖性细胞死亡途径的第一信使,但 NMDAR 拮抗剂的不成功临床试验表明存在其他机制的参与。在这里,我们表明谷氨酸及其结构类似物,包括 NMDAR 拮抗剂 L-AP5(也称为 APV),可强烈增强与酸中毒诱导的中风神经毒性相关的酸感应离子通道(ASICs)介导的电流。谷氨酸增加了 ASICs 对质子的亲和力及其开放概率,加重了体外和体内模型中的缺血性神经毒性。定点突变、基于结构的建模和功能测定揭示了 ASIC1a 细胞外结构域中真正的谷氨酸结合腔。计算药物筛选鉴定了一种小分子 LK-2,它与该腔结合并消除谷氨酸对 ASIC 电流的增强作用,但不影响 NMDAR。LK-2 可减少中风小鼠模型的梗死体积并改善感觉运动恢复,这与 ASIC1a 敲除或其他阳离子通道敲除小鼠的情况相似。我们得出结论,谷氨酸作为 ASIC 的正变构调节剂发挥作用,加剧神经毒性,并且优先针对 ASIC 上的谷氨酸结合位点而不是 NMDAR 上的谷氨酸结合位点可能是开发缺乏 NMDAR 拮抗剂精神副作用的中风治疗药物的策略。