Suppr超能文献

利用人工智能技术治疗结节病。

Leveraging AI technology in sarcoidosis.

机构信息

Department of Medicine.

Division of Pulmonary Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA.

出版信息

Curr Opin Pulm Med. 2024 Sep 1;30(5):570-575. doi: 10.1097/MCP.0000000000001085. Epub 2024 Jul 10.

Abstract

PURPOSE OF REVIEW

Sarcoidosis is a systemic, granulomatous disease of uncertain cause. Diagnosis may be difficult, prognosis uncertain and response to treatment unpredictable. The application of artificial intelligence to sarcoidosis may provide clinical decision support for these challenges. This review will provide an overview of current and potential future applications of artificial intelligence in sarcoidosis.

RECENT FINDINGS

The predominant application of artificial intelligence in sarcoidosis is imaging. Imaging models may differentiate sarcoidosis from other pulmonary disorders. Models, which predict survival and identify key factors relevant to prognosis are also available. The application of cluster analysis to organize sarcoidosis patients into developmental phenotypes is underway. Machine learning algorithms to evaluate the treatment response of sarcoidosis patients do not yet exist but similar models may evaluate patients with other inflammatory disease. The potential applications of artificial intelligence to sarcoidosis is vast, but there are practical limitations that warrant consideration. These include: the accessibility of data, biases in data, cost and privacy.

SUMMARY

The application of artificial intelligence in medicine is still in its early stages but models are poised to support the diagnostic and prognostic challenges in sarcoidosis patients. The predictive power of these artificial intelligence is likely to come from combining various models, trained on content-rich datasets from phenotypically heterogeneous sarcoidosis patients.

摘要

目的综述

结节病是一种病因不明的全身性肉芽肿性疾病。诊断可能具有挑战性,预后不确定,治疗反应也难以预测。人工智能在结节病中的应用可能为这些挑战提供临床决策支持。本文将概述人工智能在结节病中的当前和潜在的未来应用。

最近的发现

人工智能在结节病中的主要应用是成像。成像模型可将结节病与其他肺部疾病区分开来。也有预测生存和确定与预后相关的关键因素的模型。正在应用聚类分析将结节病患者组织成发育表型。评估结节病患者治疗反应的机器学习算法尚不存在,但类似的模型可能会评估其他炎症性疾病患者。人工智能在结节病中的潜在应用是广泛的,但存在一些实际限制需要考虑。这些限制包括:数据的可及性、数据中的偏差、成本和隐私。

总结

人工智能在医学中的应用仍处于早期阶段,但模型有望支持结节病患者的诊断和预后挑战。这些人工智能的预测能力可能来自于结合各种模型,这些模型是基于来自表型异质性结节病患者的内容丰富的数据集进行训练的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验