Suppr超能文献

人工智能:肺癌治疗中的机遇

Artificial intelligence: opportunities in lung cancer.

作者信息

Zhang Kai, Chen Kezhong

机构信息

Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China.

出版信息

Curr Opin Oncol. 2022 Jan 1;34(1):44-53. doi: 10.1097/CCO.0000000000000796.

Abstract

PURPOSE OF REVIEW

In this article, we focus on the role of artificial intelligence in the management of lung cancer. We summarized commonly used algorithms, current applications and challenges of artificial intelligence in lung cancer.

RECENT FINDINGS

Feature engineering for tabular data and computer vision for image data are commonly used algorithms in lung cancer research. Furthermore, the use of artificial intelligence in lung cancer has extended to the entire clinical pathway including screening, diagnosis and treatment. Lung cancer screening mainly focuses on two aspects: identifying high-risk populations and the automatic detection of lung nodules. Artificial intelligence diagnosis of lung cancer covers imaging diagnosis, pathological diagnosis and genetic diagnosis. The artificial intelligence clinical decision-support system is the main application of artificial intelligence in lung cancer treatment. Currently, the challenges of artificial intelligence applications in lung cancer mainly focus on the interpretability of artificial intelligence models and limited annotated datasets; and recent advances in explainable machine learning, transfer learning and federated learning might solve these problems.

SUMMARY

Artificial intelligence shows great potential in many aspects of the management of lung cancer, especially in screening and diagnosis. Future studies on interpretability and privacy are needed for further application of artificial intelligence in lung cancer.

摘要

综述目的

在本文中,我们聚焦于人工智能在肺癌管理中的作用。我们总结了肺癌研究中常用的算法、人工智能的当前应用及挑战。

最新发现

表格数据的特征工程和图像数据的计算机视觉是肺癌研究中常用的算法。此外,人工智能在肺癌中的应用已扩展至包括筛查、诊断和治疗在内的整个临床路径。肺癌筛查主要集中在两个方面:识别高危人群和肺结节的自动检测。肺癌的人工智能诊断涵盖影像诊断、病理诊断和基因诊断。人工智能临床决策支持系统是人工智能在肺癌治疗中的主要应用。目前,人工智能在肺癌应用中的挑战主要集中在人工智能模型的可解释性和标注数据集有限;而可解释机器学习、迁移学习和联邦学习的最新进展可能会解决这些问题。

总结

人工智能在肺癌管理的许多方面显示出巨大潜力,尤其是在筛查和诊断方面。人工智能在肺癌中的进一步应用需要未来开展关于可解释性和隐私方面的研究。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验