Tübingen Institute for Medical Education, University of Tübingen, Tübingen, Germany.
Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany.
JMIR Med Educ. 2024 Jun 12;10:e58355. doi: 10.2196/58355.
BACKGROUND: The increasing importance of artificial intelligence (AI) in health care has generated a growing need for health care professionals to possess a comprehensive understanding of AI technologies, requiring an adaptation in medical education. OBJECTIVE: This paper explores stakeholder perceptions and expectations regarding AI in medicine and examines their potential impact on the medical curriculum. This study project aims to assess the AI experiences and awareness of different stakeholders and identify essential AI-related topics in medical education to define necessary competencies for students. METHODS: The empirical data were collected as part of the TüKITZMed project between August 2022 and March 2023, using a semistructured qualitative interview. These interviews were administered to a diverse group of stakeholders to explore their experiences and perspectives of AI in medicine. A qualitative content analysis of the collected data was conducted using MAXQDA software. RESULTS: Semistructured interviews were conducted with 38 participants (6 lecturers, 9 clinicians, 10 students, 6 AI experts, and 7 institutional stakeholders). The qualitative content analysis revealed 6 primary categories with a total of 24 subcategories to answer the research questions. The evaluation of the stakeholders' statements revealed several commonalities and differences regarding their understanding of AI. Crucial identified AI themes based on the main categories were as follows: possible curriculum contents, skills, and competencies; programming skills; curriculum scope; and curriculum structure. CONCLUSIONS: The analysis emphasizes integrating AI into medical curricula to ensure students' proficiency in clinical applications. Standardized AI comprehension is crucial for defining and teaching relevant content. Considering diverse perspectives in implementation is essential to comprehensively define AI in the medical context, addressing gaps and facilitating effective solutions for future AI use in medical studies. The results provide insights into potential curriculum content and structure, including aspects of AI in medicine.
背景:人工智能(AI)在医疗保健中的重要性日益增加,这使得医疗保健专业人员全面了解 AI 技术的需求不断增长,这要求医学教育进行相应的调整。
目的:本文探讨了利益相关者对医学中 AI 的看法和期望,并研究了它们对医学课程的潜在影响。本研究项目旨在评估不同利益相关者的 AI 经验和意识,确定医学教育中与 AI 相关的重要主题,从而确定学生所需的必要能力。
方法:实证数据是在 2022 年 8 月至 2023 年 3 月期间作为 TüKITZMed 项目的一部分收集的,使用了半结构化定性访谈。对这些访谈进行了分析,以探索他们在医学中应用 AI 的经验和观点。使用 MAXQDA 软件对收集的数据进行了定性内容分析。
结果:对 38 名参与者(6 名讲师、9 名临床医生、10 名学生、6 名 AI 专家和 7 名机构利益相关者)进行了半结构化访谈。定性内容分析揭示了 6 个主要类别,共有 24 个子类别,以回答研究问题。对利益相关者陈述的评估揭示了他们对 AI 的理解存在一些共同点和差异。基于主要类别确定了以下关键 AI 主题:可能的课程内容、技能和能力;编程技能;课程范围;以及课程结构。
结论:分析强调将 AI 纳入医学课程,以确保学生熟练掌握临床应用。标准化的 AI 理解对于定义和教授相关内容至关重要。在实施过程中考虑到不同的观点对于全面定义医学中的 AI 至关重要,可以解决差距并为未来医学研究中 AI 的有效应用提供解决方案。结果提供了对潜在课程内容和结构的见解,包括医学中 AI 的各个方面。
BMC Med Educ. 2024-7-27
J Med Educ Curric Dev. 2025-5-14
Front Public Health. 2025-4-30
J Anesth Analg Crit Care. 2024-12-2
JAMIA Open. 2023-6-1
Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2023-2
Commun Med (Lond). 2022-6-3