Suppr超能文献

Trackoscope:一种低成本、开源、自主的跟踪显微镜,可用于对微尺度生物进行长期观察。

Trackoscope: A low-cost, open, autonomous tracking microscope for long-term observations of microscale organisms.

机构信息

George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States of America.

School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, United States of America.

出版信息

PLoS One. 2024 Jul 11;19(7):e0306700. doi: 10.1371/journal.pone.0306700. eCollection 2024.

Abstract

Cells and microorganisms are motile, yet the stationary nature of conventional microscopes impedes comprehensive, long-term behavioral and biomechanical analysis. The limitations are twofold: a narrow focus permits high-resolution imaging but sacrifices the broader context of organism behavior, while a wider focus compromises microscopic detail. This trade-off is especially problematic when investigating rapidly motile ciliates, which often have to be confined to small volumes between coverslips affecting their natural behavior. To address this challenge, we introduce Trackoscope, a 2-axis autonomous tracking microscope designed to follow swimming organisms ranging from 10μm to 2mm across a 325cm2 area (equivalent to an A5 sheet) for extended durations-ranging from hours to days-at high resolution. Utilizing Trackoscope, we captured a diverse array of behaviors, from the air-water swimming locomotion of Amoeba to bacterial hunting dynamics in Actinosphaerium, walking gait in Tardigrada, and binary fission in motile Blepharisma. Trackoscope is a cost-effective solution well-suited for diverse settings, from high school labs to resource-constrained research environments. Its capability to capture diverse behaviors in larger, more realistic ecosystems extends our understanding of the physics of living systems. The low-cost, open architecture democratizes scientific discovery, offering a dynamic window into the lives of previously inaccessible small aquatic organisms.

摘要

细胞和微生物是能动的,但传统显微镜的静止性质阻碍了全面、长期的行为和生物力学分析。这种限制有两个方面:窄聚焦允许高分辨率成像,但牺牲了生物体行为的更广泛背景,而宽聚焦则损害了微观细节。当研究快速运动的纤毛虫时,这种权衡尤其成问题,纤毛虫通常必须被限制在盖玻片之间的小体积中,这会影响它们的自然行为。为了解决这个挑战,我们引入了 Trackoscope,这是一种 2 轴自主跟踪显微镜,旨在跟踪大小在 10μm 到 2mm 之间的游泳生物,在 325cm2 的区域(相当于 A5 纸大小)内进行长时间的跟踪,从数小时到数天,分辨率都很高。利用 Trackoscope,我们捕捉到了各种各样的行为,从变形虫的空气-水游泳运动到放射虫中的细菌捕食动态,从缓步动物的行走步态到能动的盘藻的二分分裂。Trackoscope 是一种具有成本效益的解决方案,非常适合各种环境,从高中实验室到资源有限的研究环境。它能够在更大、更现实的生态系统中捕捉各种行为,扩展了我们对生命系统物理学的理解。低成本、开放式架构使科学发现民主化,为以前无法进入的小型水生生物的生活提供了一个动态窗口。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd97/11239018/a4a68c5da83f/pone.0306700.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验