Suppr超能文献

利用 3D 打印和静电纺丝技术制备模拟天然心肌的多尺度混合贴片

Harnessing 3D Printing and Electrospinning for Multiscale Hybrid Patches Mimicking the Native Myocardium.

机构信息

Mechanical and Materials Engineering, College of Engineering and Computing, Florida International University, Miami, Florida 33174, United States.

Department of Physics, Florida International University, Miami, Florida 33199, United States.

出版信息

ACS Appl Mater Interfaces. 2024 Jul 24;16(29):37596-37612. doi: 10.1021/acsami.4c06505. Epub 2024 Jul 11.

Abstract

Engineered cardiac tissues show potential for regenerative therapy in ischemic heart disease. Yet, selection of soft biomaterials for scaffold manufacturing is primarily influenced by empirical and compositional factors, raising concerns about arrhythmic risks due to poor electrophysiological integration. Addressing this, we developed multiscale hybrid myocardial patches mimicking native myocardium's structural and biomechanical attributes, utilizing 3D printing and electrospinning techniques. We compared three patch types: pure silicone and silicone-poly(lactic--glycolic acid) (PLGA) with random (S-PLGA-R) and aligned (S-PLGA-A) fibers. S-PLGA-A patches with fiber orientation angles of 95-115° are achieved by applying a secondary electrical field using two parallel aluminum enhancers. With bulk and localized moduli of 350-750 and 13-20 kPa resembling the native myocardium, S-PLGA-A patches demonstrate a sarcomere length of 2.1 ± 0.2 μm, ≥50% higher strain motions and diastolic phase, and a 50-70% slower rise of calcium handling compared to the other two patches. This enhanced maturation and improved synchronization phenomena are attributed to efficient force transmission and reduced stress concentration due to mechanical similarity and linear propagation of electrical signals. This study presents a promising strategy for advancing regenerative cardiac therapies by harnessing the capabilities of 3D printing and electrospinning, providing a proof-of-concept for their effectiveness.

摘要

工程化心脏组织在缺血性心脏病的再生治疗中显示出潜力。然而,用于支架制造的软生物材料的选择主要受经验和组成因素的影响,这引发了对心律失常风险的担忧,因为电生理整合不良。为了解决这个问题,我们开发了模仿天然心肌结构和生物力学特性的多尺度混合心肌贴片,利用 3D 打印和静电纺丝技术。我们比较了三种贴片类型:纯硅胶和硅胶-聚(乳酸-乙醇酸)(PLGA)与随机(S-PLGA-R)和定向(S-PLGA-A)纤维。通过使用两个平行的铝增强器施加二次电场,可以实现纤维取向角为 95-115°的 S-PLGA-A 贴片。S-PLGA-A 贴片的体模和局部模量分别为 350-750kPa 和 13-20kPa,类似于天然心肌,其肌节长度为 2.1±0.2μm,应变运动和舒张期增加≥50%,钙处理的上升速度比其他两种贴片慢 50-70%。这种增强的成熟和改善的同步现象归因于由于机械相似性和电信号的线性传播而导致的有效力传递和减少的应力集中。本研究通过利用 3D 打印和静电纺丝的能力为推进再生心脏治疗提供了一种有前途的策略,为它们的有效性提供了一个概念验证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验