Suppr超能文献

利用组织相似性先验从自动标签中通过深度学习改善脑萎缩定量。

Improving brain atrophy quantification with deep learning from automated labels using tissue similarity priors.

机构信息

Institute of Computer Vision and Robotics, University of Girona, Spain.

Tensor Medical, Girona, Spain.

出版信息

Comput Biol Med. 2024 Sep;179:108811. doi: 10.1016/j.compbiomed.2024.108811. Epub 2024 Jul 10.

Abstract

Brain atrophy measurements derived from magnetic resonance imaging (MRI) are a promising marker for the diagnosis and prognosis of neurodegenerative pathologies such as Alzheimer's disease or multiple sclerosis. However, its use in individualized assessments is currently discouraged due to a series of technical and biological issues. In this work, we present a deep learning pipeline for segmentation-based brain atrophy quantification that improves upon the automated labels of the reference method from which it learns. This goal is achieved through tissue similarity regularization that exploits the a priori knowledge that scans from the same subject made within a short interval must have similar tissue volumes. To train the presented pipeline, we use unlabeled pairs of T1-weighted MRI scans having a tissue similarity prior, and generate the target brain tissue segmentations in a fully automated manner using the fsl_anat pipeline implemented in the FMRIB Software Library (FSL). Tissue similarity regularization is enforced during training through a weighted loss term that penalizes tissue volume differences between short-interval scan pairs from the same subject. In inference, the pipeline performs end-to-end skull stripping and brain tissue segmentation from a single T1-weighted MRI scan in its native space, i.e., without performing image interpolation. For longitudinal evaluation, each image is independently segmented first, and then measures of change are computed. We evaluate the presented pipeline in two different MRI datasets, MIRIAD and ADNI1, which have longitudinal and short-interval imaging from healthy controls (HC) and Alzheimer's disease (AD) subjects. In short-interval scan pairs, tissue similarity regularization reduces the quantification error and improves the consistency of measured tissue volumes. In the longitudinal case, the proposed pipeline shows reduced variability of atrophy measures and higher effect sizes of differences in annualized rates between HC and AD subjects. Our pipeline obtains a Cohen's d effect size of d=2.07 on the MIRIAD dataset, an increase from the reference pipeline used to train it (d=1.01), and higher than that of SIENA (d=1.73), a well-known state-of-the-art approach. In the ADNI1 dataset, the proposed pipeline improves its effect size (d=1.37) with respect to the reference pipeline (d=0.80) and surpasses SIENA (d=1.33). The proposed data-driven deep learning regularization reduces the biases and systematic errors learned from the reference segmentation method, which is used to generate the training targets. Improving the accuracy and reliability of atrophy quantification methods is essential to unlock brain atrophy as a diagnostic and prognostic marker in neurodegenerative pathologies.

摘要

脑萎缩的测量来源于磁共振成像(MRI),是阿尔茨海默病或多发性硬化症等神经退行性病变的诊断和预后的一个很有前途的标志物。然而,由于一系列技术和生物学问题,目前不鼓励将其用于个体化评估。在这项工作中,我们提出了一种基于分割的脑萎缩量化的深度学习管道,该方法优于从其学习的参考方法的自动标签。这一目标是通过组织相似性正则化来实现的,该正则化利用了一个先验知识,即在短时间间隔内从同一个体获得的扫描必须具有相似的组织体积。为了训练所提出的管道,我们使用具有组织相似性先验的未标记的 T1 加权 MRI 扫描对进行训练,并使用在 FMRIB 软件库(FSL)中实现的 fsl_anat 管道以全自动方式生成目标脑组织分割。在训练过程中,通过加权损失项来强制实施组织相似性正则化,该损失项惩罚来自同一主体的短间隔扫描对之间的组织体积差异。在推断中,该管道在其原始空间(即不进行图像插值)中从单个 T1 加权 MRI 扫描执行端到端的颅骨剥离和脑组织分割。对于纵向评估,首先对每个图像进行独立分割,然后计算变化测量值。我们在两个不同的 MRI 数据集 MIRIAD 和 ADNI1 中评估了所提出的管道,这些数据集具有来自健康对照(HC)和阿尔茨海默病(AD)患者的纵向和短间隔成像。在短间隔扫描对中,组织相似性正则化减少了定量误差并提高了测量组织体积的一致性。在纵向情况下,所提出的管道显示出萎缩测量值的可变性降低,并且 HC 和 AD 患者之间的年度率差异的效果大小更高。我们的管道在 MIRIAD 数据集上获得了 Cohen's d 效应大小 d=2.07,比用于训练它的参考管道(d=1.01)更高,并且高于 SIENA(d=1.73),这是一种众所周知的最先进的方法。在 ADNI1 数据集上,与参考管道(d=0.80)相比,所提出的管道提高了其效果大小(d=1.37),并超过了 SIENA(d=1.33)。所提出的数据驱动深度学习正则化减少了从参考分割方法中学习到的偏差和系统误差,该方法用于生成训练目标。提高萎缩定量方法的准确性和可靠性对于将脑萎缩作为神经退行性病变的诊断和预后标志物至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验