School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China.
Modern Crop Biotechnology Research and Application Laboratory, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China.
Plant Physiol. 2024 Oct 1;196(2):1284-1297. doi: 10.1093/plphys/kiae375.
Hybrid plants are found extensively in the wild, and they often demonstrate superior performance of complex traits over their parents and other selfing plants. This phenomenon, known as heterosis, has been extensively applied in plant breeding for decades. However, the process of decoding hybrid plant genomes has seriously lagged due to the challenges associated with genome assembly and the lack of appropriate methodologies for their subsequent representation and analysis. Here, we present the assembly and analysis of 2 hybrids, an intraspecific hybrid between 2 maize (Zea mays ssp. mays) inbred lines and an interspecific hybrid between maize and its wild relative teosinte (Z. mays ssp. parviglumis), utilizing a combination of PacBio High Fidelity sequencing and chromatin conformation capture sequencing data. The haplotypic assemblies are well phased at chromosomal scale, successfully resolving the complex loci with extensive parental structural variations (SVs). By integrating into a biparental genome graph, the haplotypic assemblies can facilitate downstream short-read-based SV calling and allele-specific gene expression analysis, demonstrating outstanding advantages over a single linear genome. Our work offers a comprehensive workflow that aims to facilitate the decoding of numerous hybrid plant genomes, particularly those with unknown or inaccessible parentage, thereby enhancing our understanding of genome evolution and heterosis.
杂种植物在野外广泛存在,它们通常表现出比其父母和其他自交植物更优异的复杂性状表现。这种现象被称为杂种优势,已经在植物育种中得到了几十年的广泛应用。然而,由于基因组组装的挑战以及缺乏适当的方法来表示和分析后续的基因组,解码杂种植物基因组的过程严重滞后。在这里,我们展示了 2 种杂种植物的组装和分析结果,一种是 2 个玉米(Zea mays ssp. mays)自交系之间的种内杂种,另一种是玉米与其野生亲缘种类蜀黍(Z. mays ssp. parviglumis)之间的种间杂种,利用了 PacBio 高保真测序和染色质构象捕获测序数据的组合。单倍型组装在染色体尺度上很好地定相,成功地解决了具有广泛亲本结构变异(SV)的复杂基因座。通过整合到双亲基因组图谱中,单倍型组装可以促进基于短读长的 SV 调用和等位基因特异性基因表达分析,与单个线性基因组相比具有突出的优势。我们的工作提供了一个全面的工作流程,旨在促进许多杂种植物基因组的解码,特别是那些具有未知或无法访问的亲代的基因组,从而增强我们对基因组进化和杂种优势的理解。