Matsubara Toranosuke, Koga Akihisa, Takano Atsushi, Matsushita Yushu, Dotera Tomonari
Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo, 152-8551, Japan.
Department of Molecular and Macromolecular Chemistry, Nagoya University, Nagoya, Aichi, 464-8603, Japan.
Nat Commun. 2024 Jul 11;15(1):5742. doi: 10.1038/s41467-024-49843-4.
Aperiodic crystals constitute a class of materials that includes incommensurate (IC) modulated structures and quasicrystals (QCs). Although these two categories share a common foundation in the concept of superspace, the relationship between them has remained enigmatic and largely unexplored. Here, we show "any metallic-mean" QCs, surpassing the confines of Penrose-like structures, and explore their connection with IC modulated structures. In contrast to periodic approximants of QCs, our work introduces the pivotal role of "aperiodic approximants", articulated through a series of k-th metallic-mean tilings serving as aperiodic approximants for the honeycomb crystal, while simultaneously redefining this tiling as a metallic-mean IC modulated structure, highlighting the intricate interplay between these crystallographic phenomena. We extend our findings to real-world applications, discovering these tiles in a terpolymer/homopolymer blend and applying our QC theory to a colloidal simulation displaying planar IC structures. In these structures, domain walls are viewed as essential components of a quasicrystal, introducing additional dimensions in superspace. Our research provides a fresh perspective on the intricate world of aperiodic crystals, shedding light on their broader implications for domain wall structures across various fields.
非周期晶体构成了一类材料,其中包括非公度(IC)调制结构和准晶体(QC)。尽管这两类材料在超空间概念上有共同的基础,但它们之间的关系一直扑朔迷离,且在很大程度上未被探索。在这里,我们展示了超越类彭罗斯结构限制的“任意金属均值”准晶体,并探索它们与IC调制结构的联系。与准晶体的周期近似物不同,我们的工作引入了“非周期近似物”的关键作用,通过一系列第k阶金属均值平铺来阐明,这些平铺作为蜂窝晶体的非周期近似物,同时将这种平铺重新定义为金属均值IC调制结构,突出了这些晶体学现象之间的复杂相互作用。我们将研究结果扩展到实际应用中,在三元共聚物/均聚物共混物中发现了这些平铺,并将我们的准晶体理论应用于显示平面IC结构的胶体模拟中。在这些结构中,畴壁被视为准晶体的基本组成部分,在超空间中引入了额外的维度。我们的研究为非周期晶体的复杂世界提供了一个新的视角,揭示了它们在各个领域对畴壁结构的更广泛影响。