Suppr超能文献

评估颅内动脉瘤大小测量的准确性和一致性:人类专业知识与人工智能。

Assessing accuracy and consistency in intracranial aneurysm sizing: human expertise vs. artificial intelligence.

机构信息

Medilab Diagnostic Imaging, Vodovodna 100, 1000, Ljubljana, Slovenia.

Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.

出版信息

Sci Rep. 2024 Jul 12;14(1):16080. doi: 10.1038/s41598-024-65825-4.

Abstract

Intracranial aneurysms (IAs) are a common vascular pathology and are associated with a risk of rupture, which is often fatal. Aneurysm growth of more than 1 mm is considered a surrogate of rupture risk, therefore, this study presents a comprehensive analysis of intracranial aneurysm measurements utilizing a dataset comprising 358 IA from 248 computed tomography angiography (CTA) scans measured by four junior raters and one senior rater. The study explores the variability in sizing assessments by employing both human raters and an Artificial Intelligence (AI) system. Our findings reveal substantial inter- and intra-rater variability among junior raters, contrasting with the lower intra-rater variability observed in the senior rater. Standard deviations of all raters were above the threshold for IA growth (1 mm). Additionally, the study identifies a systemic bias, indicating a tendency for human experts to measure aneurysms smaller than the AI system. Our findings emphasize the challenges in human assessment while also showcasing the capacity of AI technology to improve the precision and reliability of intracranial aneurysm assessments, especially beneficial for junior raters. The potential of AI was particularly evident in the task of monitoring IA at various intervals, where the AI-based approach surpassed junior raters and achieved performance comparable to senior raters.

摘要

颅内动脉瘤(IA)是一种常见的血管病理学,与破裂风险相关,而破裂风险通常是致命的。动脉瘤生长超过 1 毫米被认为是破裂风险的替代指标,因此,本研究利用一个包含 358 个颅内动脉瘤的数据集,对 248 例计算机断层血管造影(CTA)扫描进行了综合分析,这些动脉瘤由 4 名初级评估者和 1 名高级评估者进行了测量。该研究通过人类评估者和人工智能(AI)系统,探讨了不同测量方法的差异。我们的研究结果显示,初级评估者之间的测量评估存在明显的个体间和个体内差异,而高级评估者的差异则相对较小。所有评估者的标准差均高于颅内动脉瘤生长(1 毫米)的阈值。此外,该研究还发现了一种系统性偏差,表明人类专家倾向于将动脉瘤测量得比 AI 系统更小。这些发现强调了人类评估的挑战,同时也展示了人工智能技术提高颅内动脉瘤评估的精确性和可靠性的能力,这对于初级评估者尤其有益。人工智能在不同时间间隔监测颅内动脉瘤的任务中的潜力尤为明显,基于 AI 的方法优于初级评估者,其表现可与高级评估者相媲美。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b1a/11239926/0f5404d3521f/41598_2024_65825_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验