Suppr超能文献

优化厌氧消化:从嗜热条件温和过渡到中温条件的益处。

Optimizing anaerobic digestion: Benefits of mild temperature transition from thermophilic to mesophilic conditions.

作者信息

Zhang Xingxing, Jiao Pengbo, Wang Yiwei, Dai Yinying, Zhang Ming, Wu Peng, Ma Liping

机构信息

Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China.

School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.

出版信息

Environ Sci Ecotechnol. 2024 Jun 11;21:100440. doi: 10.1016/j.ese.2024.100440. eCollection 2024 Sep.

Abstract

Anaerobic digestion (AD) plays a significant role in renewable energy recovery. Upgrading AD from thermophilic (50-57 °C) to mesophilic (30-38 °C) conditions to enhance process stability and reduce energy input remains challenging due to the high sensitivity of thermophilic microbiomes to temperature fluctuations. Here we compare the effects of two decreasing-temperature modes from 55 to 35 °C on cell viability, microbial dynamics, and interspecies interactions. A sharp transition (ST) is a one-step transition by 20 °C d, while a mild transition (MT) is a stepwise transition by 1 °C d. We find a greater decrease in methane production with ST (88.8%) compared to MT (38.9%) during the transition period. ST mode overproduced reactive oxygen species by 1.6-fold, increased membrane permeability by 2.2-fold, and downregulated microbial energy metabolism by 25.1%, leading to increased apoptosis of anaerobes by 1.9-fold and release of intracellular substances by 2.9-fold, further constraining methanogenesis. The higher (1.6 vs. 1.1 copies per A) metabolic activity of acetate-dependent methanogenesis implied more efficient methane production in a steady mesophilic, MT-mediated system. Metagenomic binning and network analyses indicated that ST induced dysbiosis in keystone species and greatly enhanced microbial functional redundancy, causing loss of microbial syntrophic interactions and redundant metabolic pathways. In contrast, the greater microbial interconnections (average degrees 44.9 vs. 22.1) in MT at a steady mesophilic state suggested that MT could better maintain necessary system functionality and stability through microbial syntrophy or specialized pathways. Adopting MT to transform thermophilic digesters into mesophilic digesters is feasible and could potentially enhance the further optimization and broader application of practical anaerobic engineering.

摘要

厌氧消化(AD)在可再生能源回收中发挥着重要作用。由于嗜热微生物群落对温度波动高度敏感,将AD从嗜热(50 - 57°C)条件升级到中温(30 - 38°C)条件以提高过程稳定性并减少能量输入仍然具有挑战性。在此,我们比较了两种从55°C降至35°C的降温模式对细胞活力、微生物动态和种间相互作用的影响。急剧转变(ST)是每天20°C的一步转变,而温和转变(MT)是每天1°C的逐步转变。我们发现,在过渡期内,与MT(38.9%)相比,ST导致的甲烷产量下降幅度更大(88.8%)。ST模式使活性氧超量产生1.6倍,膜通透性增加2.2倍,微生物能量代谢下调25.1%,导致厌氧菌凋亡增加1.9倍,细胞内物质释放增加2.9倍,进一步抑制产甲烷作用。在稳定的中温MT介导系统中,依赖乙酸盐的产甲烷作用具有更高的(每A 1.6对1.1拷贝)代谢活性,这意味着甲烷生产效率更高。宏基因组分箱和网络分析表明,ST导致关键物种的生态失调,并极大地增强了微生物功能冗余,导致微生物共生相互作用和冗余代谢途径的丧失。相比之下,在稳定的中温状态下,MT中更大的微生物互连性(平均度数44.9对22.1)表明,MT可以通过微生物共生或专门途径更好地维持必要的系统功能和稳定性。采用MT将嗜热消化器转变为中温消化器是可行的,并且有可能促进实际厌氧工程的进一步优化和更广泛应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee43/11237690/105c094ca32d/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验