Suppr超能文献

从高温到中温转变过程中,厌氧消化中增强的抗微生物耐药性和致病性的被忽视风险。

Neglected risks of enhanced antimicrobial resistance and pathogenicity in anaerobic digestion during transition from thermophilic to mesophilic.

机构信息

Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China.

Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, Shanghai 200062, PR China.

出版信息

J Hazard Mater. 2024 Aug 15;475:134886. doi: 10.1016/j.jhazmat.2024.134886. Epub 2024 Jun 11.

Abstract

Minimization of antibiotic resistance genes (ARGs) and potential pathogenic antibiotic-resistant bacteria (PARB) during anaerobic digestion (AD) is significantly impacted by temperature. However, knowledge on how ARGs and PARB respond to temperature transition from thermophilic to mesophilic is limited. Here, we combined metagenomic-based with culture-based approaches and revealed the risks of antimicrobial resistance and pathogenicity during transition from 55 °C to 35 °C for AD, with strategies of sharp (ST, one-step by 20 °C/d) and mild (MT, step-wise by 1 °C/d). Results indicated a lower decrease in methane production with MT (by 38.9%) than ST (by 88.8%). Phenotypic assays characterized a significant propagation of multi-resistant lactose-fermenting Enterobacteriaceae and indicator pathogens after both transitions, especially via ST. Further genomic evidence indicated a significant increase of ARGs (29.4-fold), virulence factor genes (1.8-fold) and PARB (65.3-fold) after ST, while slight enrichment via MT. Bacterial succession and enhanced horizontal transfer mediated by mobile genetic elements promoted ARG propagation in AD during transition, which was synchronously exacerbated through horizontal transfer mechanisms mediated by cellular physiological responses (oxidative stress, membrane permeability, bacterial conjugation and transformation) and co-selection mechanisms of biomethanation metabolic functions (acidogenesis and acetogenesis). This study reveals temperature-dependent resistome and pathogenicity development in AD, facilitating microbial risk control.

摘要

在厌氧消化(AD)过程中,抗生素耐药基因(ARGs)和潜在的致病性抗生素耐药细菌(PARB)的最小化受温度的显著影响。然而,关于 ARGs 和 PARB 如何响应从高温到中温的温度转变的知识有限。在这里,我们结合基于宏基因组学和基于培养的方法,揭示了在 AD 中从 55°C 到 35°C 的温度转变过程中抗药性和致病性的风险,采用了急剧(ST,每 20°C/d 一步)和温和(MT,每 1°C/d 逐步)的策略。结果表明,MT 下甲烷产量的下降幅度(38.9%)低于 ST(88.8%)。表型测定表明,在两种转变后,多耐药乳糖发酵肠杆菌和指示病原体都有明显的增殖,尤其是通过 ST。进一步的基因组证据表明,ST 后 ARGs(29.4 倍)、毒力因子基因(1.8 倍)和 PARB(65.3 倍)显著增加,而 MT 则略有富集。移动遗传元件介导的细菌演替和增强的水平转移促进了 AD 中 ARG 的传播,而通过细胞生理反应(氧化应激、膜通透性、细菌接合和转化)和生物甲烷代谢功能的共选择机制(产酸和产乙酸)介导的水平转移机制加剧了这种情况。本研究揭示了 AD 中温度依赖性耐药组和致病性的发展,有助于微生物风险控制。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验