Miao Guanhong, Wu Samuel S
University of Florida, Gainesville, FL, 32611, USA.
IEEE Trans Inf Forensics Secur. 2024;19:5751-5766. doi: 10.1109/tifs.2024.3402319. Epub 2024 May 17.
Conducting secure computations to protect against malicious adversaries is an emerging field of research. Current models designed for malicious security typically necessitate the involvement of two or more servers in an honest-majority setting. Among privacy-preserving data mining techniques, significant attention has been focused on the classification problem. Logistic regression emerges as a well-established classification model, renowned for its impressive performance. We introduce a novel matrix encryption method to build a maliciously secure logistic model. Our scheme involves only a single semi-honest server and is resilient to malicious data providers that may deviate arbitrarily from the scheme. The -transformation ensures that our scheme achieves indistinguishability (i.e., no adversary can determine, in polynomial time, which of the plaintexts corresponds to a given ciphertext in a chosen-plaintext attack). Malicious activities of data providers can be detected in the verification stage. A lossy compression method is implemented to minimize communication costs while preserving negligible degradation in accuracy. Experiments illustrate that our scheme is highly efficient to analyze large-scale datasets and achieves accuracy similar to non-private models. The proposed scheme outperforms other maliciously secure frameworks in terms of computation and communication costs.
进行安全计算以防范恶意对手是一个新兴的研究领域。当前为恶意安全设计的模型通常需要在诚实多数的环境中由两个或更多服务器参与。在隐私保护数据挖掘技术中,分类问题受到了极大关注。逻辑回归作为一种成熟的分类模型出现,以其出色的性能而闻名。我们引入一种新颖的矩阵加密方法来构建恶意安全的逻辑模型。我们的方案仅涉及单个半诚实服务器,并且能够抵御可能任意偏离该方案的恶意数据提供者。 -变换确保我们的方案实现不可区分性(即,在选择明文攻击中,没有对手能够在多项式时间内确定给定密文对应的明文是哪一个)。在验证阶段可以检测到数据提供者的恶意活动。实施有损压缩方法以最小化通信成本,同时保持精度的可忽略下降。实验表明,我们的方案在分析大规模数据集时非常高效,并且实现了与非隐私模型相似的精度。在计算和通信成本方面,所提出的方案优于其他恶意安全框架。