Brissac Terry, Guyonnet Cécile, Sadouni Aymane, Hernández-Montoya Ariadna, Jacquemet Elise, Legendre Rachel, Sismeiro Odile, Trieu-Cuot Patrick, Lanotte Philippe, Tazi Asmaa, Firon Arnaud
Department of Microbiology, Biology of Gram-positive Pathogens, Institut Pasteur, Université Paris Cité, 75015, Paris, France.
Université Paris Cité, Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016, Centre National de la Recherche Scientifique UMR8104, Team Bacteria and Perinatality, 75015, Paris, France.
Microlife. 2024 Jun 12;5:uqae014. doi: 10.1093/femsml/uqae014. eCollection 2024.
is among the few pathogens that have not developed resistance to ß-lactam antibiotics despite decades of clinical use. The molecular basis of this long-lasting susceptibility has not been investigated, and it is not known whether specific mechanisms constrain the emergence of resistance. In this study, we first report ß-lactam tolerance due to the inactivation of the c-di-AMP phosphodiesterase GdpP. Mechanistically, tolerance depends on antagonistic regulation by the repressor BusR, which is activated by c-di-AMP and negatively regulates ß-lactam susceptibility through the BusAB osmolyte transporter and the AmaP/Asp23/GlsB cell envelope stress complex. The BusR transcriptional response is synergistic with the simultaneous allosteric inhibition of potassium and osmolyte transporters by c-di-AMP, which individually contribute to low-level ß-lactam tolerance. Genome-wide transposon mutagenesis confirms the role of GdpP and highlights functional interactions between a lysozyme-like hydrolase, the KhpAB RNA chaperone and the protein S immunomodulator in the response of GBS to ß-lactam. Overall, we demonstrate that c-di-AMP acts as a turgor pressure rheostat, coordinating an integrated response at the transcriptional and post-translational levels to cell wall weakening caused by ß-lactam activity, and reveal additional mechanisms that could foster resistance.
是少数几种尽管临床使用数十年但仍未对β-内酰胺类抗生素产生耐药性的病原体之一。这种长期敏感性的分子基础尚未得到研究,也不清楚是否有特定机制限制耐药性的出现。在本研究中,我们首次报道了由于环二腺苷酸磷酸二酯酶GdpP失活导致的β-内酰胺耐受性。从机制上讲,耐受性取决于阻遏蛋白BusR的拮抗调节,BusR由环二腺苷酸激活,并通过BusAB渗透转运蛋白和AmaP/Asp23/GlsB细胞包膜应激复合体负调节β-内酰胺敏感性。BusR转录反应与环二腺苷酸对钾和渗透转运蛋白的同时变构抑制协同作用,这各自导致低水平的β-内酰胺耐受性。全基因组转座子诱变证实了GdpP的作用,并突出了溶菌酶样水解酶、KhpAB RNA伴侣和蛋白S免疫调节剂在无乳链球菌对β-内酰胺反应中的功能相互作用。总体而言,我们证明环二腺苷酸充当膨压变阻器,在转录和翻译后水平协调对β-内酰胺活性引起的细胞壁弱化的综合反应,并揭示了可能促进耐药性的其他机制。