文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

骨质疏松性骨整合:治疗特征和工程策略。

Osteoporotic osseointegration: therapeutic hallmarks and engineering strategies.

机构信息

Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China.

Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, P.R. China.

出版信息

Theranostics. 2024 Jun 17;14(10):3859-3899. doi: 10.7150/thno.96516. eCollection 2024.


DOI:10.7150/thno.96516
PMID:38994021
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11234277/
Abstract

Osteoporosis is a systemic skeletal disease caused by an imbalance between bone resorption and formation. Current treatments primarily involve systemic medication and hormone therapy. However, these systemic treatments lack directionality and are often ineffective for locally severe osteoporosis, with the potential for complex adverse reactions. Consequently, treatment strategies using bioactive materials or external interventions have emerged as the most promising approaches. This review proposes twelve microenvironmental treatment targets for osteoporosis-related pathological changes, including local accumulation of inflammatory factors and reactive oxygen species (ROS), imbalance of mitochondrial dynamics, insulin resistance, disruption of bone cell autophagy, imbalance of bone cell apoptosis, changes in neural secretions, aging of bone cells, increased local bone tissue vascular destruction, and decreased regeneration. Additionally, this review examines the current research status of effective or potential biophysical and biochemical stimuli based on these microenvironmental treatment targets and summarizes the advantages and optimal parameters of different bioengineering stimuli to support preclinical and clinical research on osteoporosis treatment and bone regeneration. Finally, the review addresses ongoing challenges and future research prospects.

摘要

骨质疏松症是一种由骨吸收和形成失衡引起的全身性骨骼疾病。目前的治疗主要包括系统药物治疗和激素治疗。然而,这些全身治疗缺乏针对性,对于局部严重的骨质疏松症往往效果不佳,且可能会产生复杂的不良反应。因此,使用生物活性材料或外部干预的治疗策略已成为最有前途的方法。本综述提出了与骨质疏松相关病理变化的 12 个微环境治疗靶点,包括局部炎症因子和活性氧(ROS)的积累、线粒体动力学失衡、胰岛素抵抗、破骨细胞自噬障碍、成骨细胞凋亡失衡、神经分泌变化、骨细胞衰老、局部骨组织血管破坏增加以及再生减少。此外,本综述还基于这些微环境治疗靶点,研究了基于这些微环境治疗靶点的有效或潜在生物物理和生化刺激的最新研究现状,并总结了不同生物工程刺激的优缺点和最佳参数,以支持骨质疏松症治疗和骨再生的临床前和临床研究。最后,本文讨论了当前的挑战和未来的研究前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d8f/11234277/3a416dff4fd4/thnov14p3859g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d8f/11234277/00a42f7b35d6/thnov14p3859g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d8f/11234277/cdfa0fe48886/thnov14p3859g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d8f/11234277/0ce079b6a154/thnov14p3859g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d8f/11234277/b8f069c2815f/thnov14p3859g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d8f/11234277/b65d17294c07/thnov14p3859g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d8f/11234277/48a1f0d53a22/thnov14p3859g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d8f/11234277/13797d310d51/thnov14p3859g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d8f/11234277/86592a85fd51/thnov14p3859g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d8f/11234277/9038769250ca/thnov14p3859g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d8f/11234277/73dec0222861/thnov14p3859g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d8f/11234277/fa9bf6682b79/thnov14p3859g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d8f/11234277/29e9852ed107/thnov14p3859g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d8f/11234277/214eacb3b7d1/thnov14p3859g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d8f/11234277/3a416dff4fd4/thnov14p3859g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d8f/11234277/00a42f7b35d6/thnov14p3859g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d8f/11234277/cdfa0fe48886/thnov14p3859g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d8f/11234277/0ce079b6a154/thnov14p3859g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d8f/11234277/b8f069c2815f/thnov14p3859g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d8f/11234277/b65d17294c07/thnov14p3859g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d8f/11234277/48a1f0d53a22/thnov14p3859g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d8f/11234277/13797d310d51/thnov14p3859g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d8f/11234277/86592a85fd51/thnov14p3859g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d8f/11234277/9038769250ca/thnov14p3859g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d8f/11234277/73dec0222861/thnov14p3859g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d8f/11234277/fa9bf6682b79/thnov14p3859g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d8f/11234277/29e9852ed107/thnov14p3859g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d8f/11234277/214eacb3b7d1/thnov14p3859g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d8f/11234277/3a416dff4fd4/thnov14p3859g014.jpg

相似文献

[1]
Osteoporotic osseointegration: therapeutic hallmarks and engineering strategies.

Theranostics. 2024

[2]
Enhanced osseointegration of three-dimensional supramolecular bioactive interface through osteoporotic microenvironment regulation.

Theranostics. 2020-3-26

[3]
Metformin promotes the osseointegration of titanium implants under osteoporotic conditions by regulating BMSCs autophagy, and osteogenic differentiation.

Biochem Biophys Res Commun. 2020-10-15

[4]
Mitochondrial dysfunction and therapeutic perspectives in osteoporosis.

Front Endocrinol (Lausanne). 2024

[5]
Polyphenols and Functionalized Hydrogels for Osteoporotic Bone Regeneration.

Macromol Rapid Commun. 2025-1

[6]
Bone tissue engineering in osteoporosis.

Maturitas. 2013-4-4

[7]
Autophagy in Bone Remodeling: A Regulator of Oxidative Stress.

Front Endocrinol (Lausanne). 2022

[8]
Nanotechnology Treatment Options for Osteoporosis and Its Corresponding Consequences.

Curr Osteoporos Rep. 2016-10

[9]
Advances in Nanotechnology for the Treatment of Osteoporosis.

Curr Osteoporos Rep. 2016-6

[10]
Advances in materials-based therapeutic strategies against osteoporosis.

Biomaterials. 2023-5

引用本文的文献

[1]
NLRP3 Inflammasome-Mediated Pyroptosis in Osteoporosis: Osteoimmune Mechanisms and Therapeutic Targeting.

J Cell Mol Med. 2025-8

[2]
Metformin facilitates osteogenic differentiation of bone marrow stromal cells through AMPK-dependent autophagy: an investigation into the healing of osteoporotic fractures in murine models.

J Orthop Surg Res. 2025-7-16

[3]
Implant Design and Its Applications in the Fixation of Osteoporotic Bones: Newer Technologies in Nails, Plates and External Fixators.

Indian J Orthop. 2024-12-2

[4]
Stabilization of Osteoporotic Pelvis and Acetabular Fractures.

Indian J Orthop. 2025-1-4

[5]
Trifunctional Sialylation-Based SF-ZIF@NA Hydrogel for Selective Osteoclast Inhibition and Enhanced Bone-Vessel Regeneration in Osteoporotic Bone Defects.

Adv Sci (Weinh). 2025-5

本文引用的文献

[1]
Microdroplets Encapsulated with NFATc1-siRNA and Exosomes-Derived from MSCs Onto 3D Porous PLA Scaffold for Regulating Osteoclastogenesis and Promoting Osteogenesis.

Int J Nanomedicine. 2024-4-9

[2]
The role of bile acid metabolism in bone and muscle: from analytics to mechanisms.

Crit Rev Clin Lab Sci. 2024-9

[3]
Near-infrared light responsive gold nanoparticles coating endows polyetheretherketone with enhanced osseointegration and antibacterial properties.

Mater Today Bio. 2024-2-1

[4]
Bone Targeting Nanoparticles for the Treatment of Osteoporosis.

Int J Nanomedicine. 2024

[5]
Secretin-dependent signals in the ventromedial hypothalamus regulate energy metabolism and bone homeostasis in mice.

Nat Commun. 2024-2-3

[6]
A parathyroid hormone related supramolecular peptide for multi-functionalized osteoregeneration.

Bioact Mater. 2023-12-27

[7]
A green, efficient and stable platform based on hyperbranched quaternized hydrothermal magnetic chitosan nanospheres integrated cytomembranes for screening drug candidates from natural products.

Int J Biol Macromol. 2024-2

[8]
TMEM135 maintains the equilibrium of osteogenesis and adipogenesis by regulating mitochondrial dynamics.

Metabolism. 2024-3

[9]
Osteoporotic Bone Regeneration via Plenished Biomimetic PLGA Scaffold with Sequential Release System.

Small. 2024-6

[10]
Sensory nerves directly promote osteoclastogenesis by secreting peptidyl-prolyl cis-trans isomerase D (Cyp40).

Bone Res. 2023-12-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索