Suppr超能文献

纤毛运输复合物蛋白核功能的进化轨迹。

Evolutionary trajectory for nuclear functions of ciliary transport complex proteins.

机构信息

Faculty of Biology, Institute of Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany.

出版信息

Microbiol Mol Biol Rev. 2024 Sep 26;88(3):e0000624. doi: 10.1128/mmbr.00006-24. Epub 2024 Jul 12.

Abstract

SUMMARYCilia and the nucleus were two defining features of the last eukaryotic common ancestor. In early eukaryotic evolution, these structures evolved through the diversification of a common membrane-coating ancestor, the protocoatomer. While in cilia, the descendants of this protein complex evolved into parts of the intraflagellar transport complexes and BBSome, the nucleus gained its selectivity by recruiting protocoatomer-like proteins to the nuclear envelope to form the selective nuclear pore complexes. Recent studies show a growing number of proteins shared between the proteomes of the respective organelles, and it is currently unknown how ciliary transport proteins could acquire nuclear functions and . The nuclear functions of ciliary proteins are still observable today and remain relevant for the understanding of the disease mechanisms behind ciliopathies. In this work, we review the evolutionary history of cilia and nucleus and their respective defining proteins and integrate current knowledge into theories for early eukaryotic evolution. We postulate a scenario where both compartments co-evolved and that fits current models of eukaryotic evolution, explaining how ciliary proteins and nucleoporins acquired their dual functions.

摘要

摘要纤毛和核是最后一个真核生物共同祖先的两个重要特征。在早期真核生物进化过程中,这些结构通过一个共同的膜包裹祖先的多样化而进化,这个祖先被称为原外套体。虽然在纤毛中,这个蛋白质复合物的后代演变成了鞭毛内运输复合物和 BBSome 的一部分,但核通过招募原外套体样蛋白到核膜上形成选择性核孔复合物来获得选择性。最近的研究表明,在各自细胞器的蛋白质组之间存在越来越多的共享蛋白,目前尚不清楚纤毛运输蛋白如何获得核功能以及它们是如何被选择的。纤毛蛋白的核功能至今仍可观察到,对于理解纤毛病背后的疾病机制仍然具有重要意义。在这项工作中,我们回顾了纤毛和核及其各自定义蛋白的进化历史,并将当前的知识整合到早期真核生物进化的理论中。我们提出了一个假设,即两个隔室共同进化,并符合当前的真核生物进化模型,解释了纤毛蛋白和核孔蛋白如何获得它们的双重功能。

相似文献

1
Evolutionary trajectory for nuclear functions of ciliary transport complex proteins.
Microbiol Mol Biol Rev. 2024 Sep 26;88(3):e0000624. doi: 10.1128/mmbr.00006-24. Epub 2024 Jul 12.
2
A cross-species analysis of neuroanatomical covariance sex differences in humans and mice.
Biol Sex Differ. 2025 Jul 1;16(1):47. doi: 10.1186/s13293-025-00728-1.
7
Adapting Safety Plans for Autistic Adults with Involvement from the Autism Community.
Autism Adulthood. 2025 May 28;7(3):293-302. doi: 10.1089/aut.2023.0124. eCollection 2025 Jun.
8
The homolog of Vps16 interacts with the core members of the Vps-C tethering complex.
mSphere. 2025 Jul 29;10(7):e0028725. doi: 10.1128/msphere.00287-25. Epub 2025 Jul 8.
9
"In a State of Flow": A Qualitative Examination of Autistic Adults' Phenomenological Experiences of Task Immersion.
Autism Adulthood. 2024 Sep 16;6(3):362-373. doi: 10.1089/aut.2023.0032. eCollection 2024 Sep.
10
A subset of evolutionarily conserved centriolar satellite core components is crucial for sperm flagellum biogenesis.
Theranostics. 2025 Jun 12;15(14):7025-7044. doi: 10.7150/thno.117118. eCollection 2025.

本文引用的文献

1
On the origin of the nucleus: a hypothesis.
Microbiol Mol Biol Rev. 2023 Dec 20;87(4):e0018621. doi: 10.1128/mmbr.00186-21. Epub 2023 Nov 29.
2
Inference and reconstruction of the heimdallarchaeial ancestry of eukaryotes.
Nature. 2023 Jun;618(7967):992-999. doi: 10.1038/s41586-023-06186-2. Epub 2023 Jun 14.
3
Neofunctionalization of ciliary BBS proteins to nuclear roles is likely a frequent innovation across eukaryotes.
iScience. 2023 Mar 16;26(4):106410. doi: 10.1016/j.isci.2023.106410. eCollection 2023 Apr 21.
4
Eukaryotic evolution: Deep phylogeny does not imply morphological novelty.
Curr Biol. 2023 Feb 6;33(3):R112-R114. doi: 10.1016/j.cub.2022.12.016.
5
Actin cytoskeleton and complex cell architecture in an Asgard archaeon.
Nature. 2023 Jan;613(7943):332-339. doi: 10.1038/s41586-022-05550-y. Epub 2022 Dec 21.
6
Microbial predators form a new supergroup of eukaryotes.
Nature. 2022 Dec;612(7941):714-719. doi: 10.1038/s41586-022-05511-5. Epub 2022 Dec 7.
7
Metabolomic fingerprinting of renal disease progression in Bardet-Biedl syndrome reveals mitochondrial dysfunction in kidney tubular cells.
iScience. 2022 Sep 27;25(11):105230. doi: 10.1016/j.isci.2022.105230. eCollection 2022 Nov 18.
8
Evolution of factors shaping the endoplasmic reticulum.
Traffic. 2022 Sep;23(9):462-473. doi: 10.1111/tra.12863. Epub 2022 Aug 17.
9
Ciliary transition zone proteins coordinate ciliary protein composition and ectosome shedding.
Nat Commun. 2022 Jul 9;13(1):3997. doi: 10.1038/s41467-022-31751-0.
10
Cytoskeletal regulation of a transcription factor by DNA mimicry via coiled-coil interactions.
Nat Cell Biol. 2022 Jul;24(7):1088-1098. doi: 10.1038/s41556-022-00935-7. Epub 2022 Jun 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验