Suppr超能文献

基于 GEE 的中国城市群地表城市热岛的定量评估及驱动因子分析。

Quantitative assessment and driving factors analysis of surface urban heat island of urban agglomerations in China based on GEE.

机构信息

College of Geography and Environmental Science, Northwest Normal University, Lanzhou, 730070, China.

出版信息

Environ Sci Pollut Res Int. 2024 Jul;31(34):47350-47364. doi: 10.1007/s11356-024-34205-w. Epub 2024 Jul 13.

Abstract

The urban heat island (UHI) effect generated by the development of high-speed urbanization has become one of the major problems affecting the urban ecological environment. As the main body of urbanization in China, China's urban agglomerations are the core areas of urban heat island effect. The purpose of this study is to study the spatial-temporal characteristics and driving factors of surface urban heat island in 19 urban agglomerations in China, with a view to providing theoretical references for the prevention of urban thermal environmental risks. Based on Google Earth Engine (GEE), this paper estimated the surface urban heat island intensity (SUHII) of 19 urban agglomerations in China from 2003 to 2019 using MODIS land surface temperature (LST) data. Correlation analysis and regression analysis were used to explore the correlation between the change of SUHII and driving factors. Finally, the driving factors of SUHII were detected by the geo-detector model. Results showed that (1) the SUHII of 19 urban agglomerations in arid and semi-arid areas of northwestern China is higher than that in humid areas of eastern and southeastern China. (2) The SUHII of 19 urban agglomerations in China generally shows a decreasing trend, and the spatial variation of the change trend is significant. (3) There are positive correlations between SUHII and reference evapotranspiration (ET), population density (POP), gross domestic product (GDP), nitrogen dioxide (NO), ozone (O), and ultraviolet aerosol index (UVAI); negative correlations with normalized difference vegetation index (NDVI), DEM, sulfur dioxide (SO), carbon monoxide (CO), and formaldehyde (HCHO); the correlations all pass the significance test of P < 0.05 and are statistically significant. (4) The factor detection results showed that NDVI, land cover type (LC), and UVAI were the main driving factors of SUHII. The interaction detection results showed that the interaction between O and UVAI had the most significant impact on SUHII.

摘要

城市热岛(UHI)效应是由高速城市化发展所产生的,已成为影响城市生态环境的主要问题之一。城市群作为中国城市化的主体,是城市热岛效应的核心区域。本研究旨在研究中国 19 个城市群的地表城市热岛时空特征及其驱动因素,以期为预防城市热环境风险提供理论参考。基于 Google Earth Engine(GEE),本研究使用 MODIS 地表温度(LST)数据,估算了 2003 年至 2019 年中国 19 个城市群的地表城市热岛强度(SUHII)。采用相关分析和回归分析,探讨了 SUHII 变化与驱动因素之间的相关性。最后,采用地理探测器模型检测了 SUHII 的驱动因素。结果表明:(1)中国西北干旱半干旱地区的 19 个城市群的 SUHII 高于中国东部和东南部的湿润地区;(2)中国 19 个城市群的 SUHII 总体呈下降趋势,且变化趋势的空间变异性显著;(3)SUHII 与参考蒸散量(ET)、人口密度(POP)、国内生产总值(GDP)、二氧化氮(NO)、臭氧(O)和紫外气溶胶指数(UVAI)呈正相关,与归一化植被指数(NDVI)、数字高程模型(DEM)、二氧化硫(SO)、一氧化碳(CO)和甲醛(HCHO)呈负相关,相关关系均通过 P<0.05 的显著性检验,且具有统计学意义;(4)因子检测结果表明,NDVI、土地覆盖类型(LC)和 UVAI 是 SUHII 的主要驱动因素,交互检测结果表明,O 与 UVAI 的交互作用对 SUHII 的影响最大。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验