Computational Cancer Genomics Groups, Spanish Cancer Research Center (CNIO), Madrid, Spain.
Genomic Medicine Institute, Medical Research Center, Seoul National University College of Medicine (SNUCM), Seoul, 03080, Republic of Korea.
BMC Bioinformatics. 2024 Jul 12;25(1):236. doi: 10.1186/s12859-024-05854-y.
Homologous recombination deficiency (HRD) stands as a clinical indicator for discerning responsive outcomes to platinum-based chemotherapy and poly ADP-ribose polymerase (PARP) inhibitors. One of the conventional approaches to HRD prognostication has generally centered on identifying deleterious mutations within the BRCA1/2 genes, along with quantifying the genomic scars, such as Genomic Instability Score (GIS) estimation with scarHRD. However, the scarHRD method has limitations in scenarios involving tumors bereft of corresponding germline data. Although several RNA-seq-based HRD prediction algorithms have been developed, they mainly support cohort-wise classification, thereby yielding HRD status without furnishing an analogous quantitative metric akin to scarHRD. This study introduces the expHRD method, which operates as a novel transcriptome-based framework tailored to n-of-1-style HRD scoring.
The prediction model has been established using the elastic net regression method in the Cancer Genome Atlas (TCGA) pan-cancer training set. The bootstrap technique derived the HRD geneset for applying the expHRD calculation. The expHRD demonstrated a notable correlation with scarHRD and superior performance in predicting HRD-high samples. We also performed intra- and extra-cohort evaluations for clinical feasibility in the TCGA-OV and the Genomic Data Commons (GDC) ovarian cancer cohort, respectively. The innovative web service designed for ease of use is poised to extend the realms of HRD prediction across diverse malignancies, with ovarian cancer standing as an emblematic example.
Our novel approach leverages the transcriptome data, enabling the prediction of HRD status with remarkable precision. This innovative method addresses the challenges associated with limited available data, opening new avenues for utilizing transcriptomics to inform clinical decisions.
同源重组缺陷(HRD)是识别对铂类化疗和聚 ADP-核糖聚合酶(PARP)抑制剂有反应的临床指标。预测 HRD 的传统方法之一通常集中在识别 BRCA1/2 基因中的有害突变,并定量基因组损伤,如使用 scarHRD 估计基因组不稳定性评分(GIS)。然而,在没有相应种系数据的肿瘤情况下,scarHRD 方法存在局限性。尽管已经开发了几种基于 RNA-seq 的 HRD 预测算法,但它们主要支持队列分类,从而提供 HRD 状态,而不提供类似于 scarHRD 的类似定量指标。本研究介绍了 expHRD 方法,这是一种新的基于转录组的框架,专门用于 n-of-1 风格的 HRD 评分。
该预测模型是使用弹性网络回归方法在癌症基因组图谱(TCGA)泛癌训练集中建立的。Bootstrap 技术得出了用于 expHRD 计算的 HRD 基因集。expHRD 与 scarHRD 有显著相关性,并在预测 HRD-高样本方面表现出优异的性能。我们还分别在 TCGA-OV 和基因组数据共享(GDC)卵巢癌队列中进行了 intra-和 extra-cohort 评估,以评估其在临床中的可行性。我们设计了一个创新的网络服务,旨在方便使用,有望将 HRD 预测扩展到多种恶性肿瘤中,卵巢癌是一个典型的例子。
我们的新方法利用转录组数据,能够以惊人的精度预测 HRD 状态。这种创新方法解决了数据有限的挑战,为利用转录组学为临床决策提供信息开辟了新的途径。