Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota Health Sciences Center, 6-155 Jackson Hall, 321 Church Street, Minneapolis, MN 55455, USA.
Department of Biochemistry, Cardiovascular Research Instutute Maastricht (CARIM), University of Maastricht, 6229 ER Maastricht, The Netherlands.
Int J Mol Sci. 2024 Jun 25;25(13):6956. doi: 10.3390/ijms25136956.
Galectins are multifunctional effectors in cellular homeostasis and dysregulation. Oxidation of human galectin-1 (Gal-1) with its six sulfhydryls produces a disulfide-bridged oxidized form that lacks normal lectin activity yet gains new glycan-independent functionality. Nevertheless, the mechanistic details as to how Gal-1 oxidation occurs remain unclear. Here, we used N and C HSQC NMR spectroscopy to gain structural insight into the CuSO-mediated path of Gal-1 oxidation and identified a minimum two-stage conversion process. During the first phase, disulfide bridges form slowly between C16-C88 and/or C42-C66 to produce a partially oxidized, conformationally flexible intermediate that retains the ability to bind lactose. Site-directed mutagenesis of C16 to S16 impedes the onset of this overall slow process. During the second phase, increased motional dynamics of the intermediate enable the relatively distant C2 and C130 residues to form the third and final disulfide bond, leading to an unfolded state and consequent dimer dissociation. This fully oxidized end state loses the ability to bind lactose, as shown by the hemagglutination assay. Consistent with this model, we observed that the Gal-1 C2S mutant maintains intermediate-state structural features with a free sulfhydryl group at C130. Incubation with dithiothreitol reduces all disulfide bonds and allows the lectin to revert to its native state. Thus, the sequential, non-random formation of three disulfide bridges in Gal-1 in an oxidative environment acts as a molecular switch for fundamental changes to its functionality. These data inspire detailed bioactivity analysis of the structurally defined oxidized intermediate in, e.g., acute and chronic inflammation.
半乳糖凝集素是细胞内稳态和失调的多功能效应因子。人半乳糖凝集素-1(Gal-1)的六个巯基氧化会产生一个二硫键桥连的氧化形式,这种形式丧失了正常的凝集素活性,但获得了新的糖非依赖性功能。然而,Gal-1 氧化发生的机制细节仍不清楚。在这里,我们使用 N 和 C HSQC NMR 光谱学对半乳糖凝集素-1 的 CuSO 介导氧化途径获得结构见解,并确定了一个最小的两阶段转化过程。在第一阶段,二硫键在 C16-C88 和/或 C42-C66 之间缓慢形成,产生一个部分氧化、构象灵活的中间产物,该产物保留结合乳糖的能力。C16 突变为 S16 会阻碍整个缓慢过程的开始。在第二阶段,中间产物的运动动态增加,使相对较远的 C2 和 C130 残基能够形成第三个也是最后一个二硫键,导致无规卷曲状态和随后的二聚体解离。这种完全氧化的终态丧失了结合乳糖的能力,如凝集试验所示。与该模型一致,我们观察到 Gal-1 C2S 突变体保持中间状态的结构特征,C130 上有游离巯基。用二硫苏糖醇孵育会还原所有二硫键,并使凝集素恢复到其天然状态。因此,在氧化环境中,Gal-1 中三个二硫键的顺序、非随机形成充当了其功能发生根本变化的分子开关。这些数据激发了对结构定义的氧化中间产物的详细生物活性分析,例如在急性和慢性炎症中。