Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
Int J Mol Sci. 2024 Jul 5;25(13):7376. doi: 10.3390/ijms25137376.
Circulating biomarkers play a pivotal role in personalized medicine, offering potential for disease screening, prevention, and treatment. Despite established associations between numerous biomarkers and diseases, elucidating their causal relationships is challenging. Mendelian Randomization (MR) can address this issue by employing genetic instruments to discern causal links. Additionally, using multiple MR methods with overlapping results enhances the reliability of discovered relationships. Here, we report an MR study using multiple methods, including inverse variance weighted, simple mode, weighted mode, weighted median, and MR-Egger. We use the MR-base resource (v0.5.6) from Hemani et al. 2018 to evaluate causal relationships between 212 circulating biomarkers (curated from UK Biobank analyses by Neale lab and from Shin et al. 2014, Roederer et al. 2015, and Kettunen et al. 2016 and 99 complex diseases (curated from several consortia by MRC IEU and Biobank Japan). We report novel causal relationships found by four or more MR methods between glucose and bipolar disorder (Mean Effect Size estimate across methods: 0.39) and between cystatin C and bipolar disorder (Mean Effect Size: -0.31). Based on agreement in four or more methods, we also identify previously known links between urate with gout and creatine with chronic kidney disease, as well as biomarkers that may be causal of cardiovascular conditions: apolipoprotein B, cholesterol, LDL, lipoprotein A, and triglycerides in coronary heart disease, as well as lipoprotein A, LDL, cholesterol, and apolipoprotein B in myocardial infarction. This Mendelian Randomization study not only corroborates known causal relationships between circulating biomarkers and diseases but also uncovers two novel biomarkers associated with bipolar disorder that warrant further investigation. Our findings provide insight into understanding how biological processes reflecting circulating biomarkers and their associated effects may contribute to disease etiology, which can eventually help improve precision diagnostics and intervention.
循环生物标志物在个性化医学中发挥着关键作用,为疾病筛查、预防和治疗提供了潜力。尽管许多生物标志物与疾病之间存在已确立的关联,但阐明它们的因果关系具有挑战性。孟德尔随机化(MR)可以通过使用遗传工具来辨别因果关系来解决这个问题。此外,使用具有重叠结果的多种 MR 方法可以提高发现关系的可靠性。在这里,我们报告了一项使用多种方法(包括逆方差加权、简单模式、加权模式、加权中位数和 MR-Egger)进行的 MR 研究。我们使用来自 Hemani 等人的 MR-base 资源(v0.5.6)。2018 年评估了 212 种循环生物标志物(由 Neale 实验室从英国生物库分析中筛选,以及由 Shin 等人从 2014 年、Roederer 等人从 2015 年和 Kettunen 等人从 2016 年筛选)与 99 种复杂疾病(由 MRC IEU 和 Biobank Japan 从几个联合会中筛选)之间的因果关系。我们报告了四种或更多 MR 方法之间发现的新型因果关系,葡萄糖与双相情感障碍之间(方法间平均效应大小估计值:0.39)和半胱氨酸蛋白酶抑制剂 C 与双相情感障碍之间(平均效应大小:-0.31)。基于四种或更多方法的一致性,我们还确定了尿酸与痛风之间以及肌酸与慢性肾病之间先前已知的联系,以及可能与心血管状况有关的生物标志物:载脂蛋白 B、胆固醇、LDL、脂蛋白 A 和甘油三酯与冠心病,以及脂蛋白 A、LDL、胆固醇和载脂蛋白 B 与心肌梗死。这项孟德尔随机化研究不仅证实了循环生物标志物与疾病之间已知的因果关系,还发现了与双相情感障碍相关的两种新型生物标志物,值得进一步研究。我们的研究结果为理解反映循环生物标志物及其相关效应的生物过程如何有助于疾病病因学提供了新的视角,这最终有助于改善精准诊断和干预。