Department of Genetics, Stanford University School of Medicine, Stanford, United States.
Herbold Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, United States.
Elife. 2022 Sep 8;11:e79348. doi: 10.7554/eLife.79348.
Pleiotropy and genetic correlation are widespread features in genome-wide association studies (GWAS), but they are often difficult to interpret at the molecular level. Here, we perform GWAS of 16 metabolites clustered at the intersection of amino acid catabolism, glycolysis, and ketone body metabolism in a subset of UK Biobank. We utilize the well-documented biochemistry jointly impacting these metabolites to analyze pleiotropic effects in the context of their pathways. Among the 213 lead GWAS hits, we find a strong enrichment for genes encoding pathway-relevant enzymes and transporters. We demonstrate that the effect directions of variants acting on biology between metabolite pairs often contrast with those of upstream or downstream variants as well as the polygenic background. Thus, we find that these outlier variants often reflect biology local to the traits. Finally, we explore the implications for interpreting disease GWAS, underscoring the potential of unifying biochemistry with dense metabolomics data to understand the molecular basis of pleiotropy in complex traits and diseases.
在全基因组关联研究(GWAS)中,多效性和遗传相关性是普遍存在的特征,但在分子水平上往往难以解释。在这里,我们对 UK Biobank 中的一个亚组中氨基酸分解代谢、糖酵解和酮体代谢交汇处聚集的 16 种代谢物进行了 GWAS。我们利用共同影响这些代谢物的有充分文献记录的生物化学知识,在其途径的背景下分析多效性效应。在 213 个主要 GWAS 命中中,我们发现编码途径相关酶和转运蛋白的基因有很强的富集。我们证明,作用于代谢物对之间生物学的变异的效应方向通常与上游或下游变异以及多基因背景的效应方向相反。因此,我们发现这些异常变异通常反映了性状局部的生物学。最后,我们探讨了这对解释疾病 GWAS 的意义,强调了将生物化学与密集代谢组学数据相结合来理解复杂性状和疾病中多效性的分子基础的潜力。