School of Information and Electronic Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China.
School of Computer Science, Hangzhou Dianzi University, Hangzhou 310018, China.
Sensors (Basel). 2024 Jun 29;24(13):4234. doi: 10.3390/s24134234.
Ischemic stroke is a type of brain dysfunction caused by pathological changes in the blood vessels of the brain which leads to brain tissue ischemia and hypoxia and ultimately results in cell necrosis. Without timely and effective treatment in the early time window, ischemic stroke can lead to long-term disability and even death. Therefore, rapid detection is crucial in patients with ischemic stroke. In this study, we developed a deep learning model based on fusion features extracted from electroencephalography (EEG) signals for the fast detection of ischemic stroke. Specifically, we recruited 20 ischemic stroke patients who underwent EEG examination during the acute phase of stroke and collected EEG signals from 19 adults with no history of stroke as a control group. Afterwards, we constructed correlation-weighted Phase Lag Index (cwPLI), a novel feature, to explore the synchronization information and functional connectivity between EEG channels. Moreover, the spatio-temporal information from functional connectivity and the nonlinear information from complexity were fused by combining the cwPLI matrix and Sample Entropy (SaEn) together to further improve the discriminative ability of the model. Finally, the novel MSE-VGG network was employed as a classifier to distinguish ischemic stroke from non-ischemic stroke data. Five-fold cross-validation experiments demonstrated that the proposed model possesses excellent performance, with accuracy, sensitivity, and specificity reaching 90.17%, 89.86%, and 90.44%, respectively. Experiments on time consumption verified that the proposed method is superior to other state-of-the-art examinations. This study contributes to the advancement of the rapid detection of ischemic stroke, shedding light on the untapped potential of EEG and demonstrating the efficacy of deep learning in ischemic stroke identification.
缺血性脑卒中是一种由脑血管病变引起的脑功能障碍,导致脑组织缺血缺氧,最终导致细胞坏死。如果在早期时间窗内没有及时有效的治疗,缺血性脑卒中可能导致长期残疾甚至死亡。因此,快速检测对于缺血性脑卒中患者至关重要。在这项研究中,我们开发了一种基于脑电图(EEG)信号融合特征的深度学习模型,用于快速检测缺血性脑卒中。具体来说,我们招募了 20 名在脑卒中急性期接受 EEG 检查的缺血性脑卒中患者,并从 19 名没有脑卒中病史的成年人中收集 EEG 信号作为对照组。随后,我们构建了相关加权相位滞后指数(cwPLI),这是一种新的特征,用于探索 EEG 通道之间的同步信息和功能连接。此外,通过将 cwPLI 矩阵和样本熵(SaEn)相结合,融合功能连接的时空信息和复杂性的非线性信息,进一步提高了模型的判别能力。最后,我们采用新型 MSE-VGG 网络作为分类器,将缺血性脑卒中与非缺血性脑卒中数据区分开来。五折交叉验证实验表明,所提出的模型具有优异的性能,准确率、敏感度和特异度分别达到 90.17%、89.86%和 90.44%。实验表明,该方法在时间消耗方面优于其他最先进的检查方法。这项研究为缺血性脑卒中的快速检测做出了贡献,揭示了 EEG 的未开发潜力,并证明了深度学习在缺血性脑卒中识别中的有效性。