Suppr超能文献

中风脑电图研究的文献计量分析:当前趋势与未来方向

A bibliometric analysis of electroencephalogram research in stroke: current trends and future directions.

作者信息

Liao Xiao-Yu, Jiang Yu-Er, Xu Ren-Jie, Qian Ting-Ting, Liu Shi-Lu, Che Yi

机构信息

Department of Rehabilitation Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China.

Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China.

出版信息

Front Neurol. 2025 Apr 28;16:1539736. doi: 10.3389/fneur.2025.1539736. eCollection 2025.

Abstract

BACKGROUND

Electroencephalography (EEG) has become an indispensable tool in stroke research for real-time monitoring of neural activity, prognosis prediction, and rehabilitation support. In recent decades, EEG applications in stroke research have expanded, particularly in areas like brain-computer interfaces (BCI) and neurofeedback for motor recovery. However, a comprehensive analysis of research trends in this domain is currently unavailable.

METHODS

The study collected data from the Web of Science Core Collection database, selecting publications related to stroke and EEG from 2005 to 2024. Visual analysis tools such as VOSviewer and CiteSpace were utilized to build knowledge maps of the research field, analyzing the distribution of publications, authors, institutions, journals, and collaboration networks. Additionally, co-occurrence, clustering, and burst detection of keywords were analyzed in detail.

RESULTS

A total of 2,931 publications were identified, indicating a consistent increase in EEG research in stroke, with significant growth post-2017. The United States, China, and Germany emerged as the leading contributors, with high collaboration networks among Western institutions. Key research areas included signal processing advancements, EEG applications in seizure risk and consciousness disorder assessment, and EEG-driven rehabilitation techniques. Notably, recent studies have focused on integrating EEG with machine learning and multimodal data for more precise functional evaluations.

CONCLUSION

The findings reveal that EEG has evolved from a diagnostic tool to a therapeutic support platform in the context of stroke care. The advent of deep learning and multimodal integration has positioned EEG for expanded applications in personalized rehabilitation. It is recommended that future studies prioritize interdisciplinary collaboration and standardized EEG methodologies in order to facilitate clinical adoption and enhance translational potential in stroke management.

摘要

背景

脑电图(EEG)已成为中风研究中实时监测神经活动、预测预后和支持康复的不可或缺的工具。近几十年来,EEG在中风研究中的应用不断扩展,特别是在脑机接口(BCI)和运动恢复的神经反馈等领域。然而,目前尚无对该领域研究趋势的全面分析。

方法

本研究从科学网核心合集数据库收集数据,选取2005年至2024年与中风和EEG相关的出版物。利用VOSviewer和CiteSpace等可视化分析工具构建该研究领域的知识图谱,分析出版物、作者、机构、期刊和合作网络的分布情况。此外,还详细分析了关键词的共现、聚类和突发检测情况。

结果

共识别出2931篇出版物,表明中风领域的EEG研究持续增加,2017年后增长显著。美国、中国和德国是主要贡献者,西方机构之间的合作网络紧密。关键研究领域包括信号处理进展、EEG在癫痫发作风险和意识障碍评估中的应用以及EEG驱动的康复技术。值得注意的是,最近的研究集中在将EEG与机器学习和多模态数据相结合,以进行更精确的功能评估。

结论

研究结果表明,在中风护理背景下,EEG已从诊断工具演变为治疗支持平台。深度学习和多模态整合的出现使EEG在个性化康复中具有更广泛的应用前景。建议未来的研究优先考虑跨学科合作和标准化的EEG方法,以促进临床应用并提高中风管理中的转化潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/973d/12066261/3a44826463bc/fneur-16-1539736-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验