Department of Smart Agro-Industry, Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52725, Republic of Korea.
Department of Biosystem Engineering, Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea.
Sensors (Basel). 2024 Jun 30;24(13):4260. doi: 10.3390/s24134260.
Hyperspectral imaging was used to predict the total polyphenol content in low-temperature stressed tomato seedlings for the development of a multispectral image sensor. The spectral data with a full width at half maximum (FWHM) of 5 nm were merged to obtain FWHMs of 10 nm, 25 nm, and 50 nm using a commercialized bandpass filter. Using the permutation importance method and regression coefficients, we developed the least absolute shrinkage and selection operator (Lasso) regression models by setting the band number to ≥11, ≤10, and ≤5 for each FWHM. The regression model using 56 bands with an FWHM of 5 nm resulted in an R of 0.71, an RMSE of 3.99 mg/g, and an RE of 9.04%, whereas the model developed using the spectral data of only 5 bands with a FWHM of 25 nm (at 519.5 nm, 620.1 nm, 660.3 nm, 719.8 nm, and 980.3 nm) provided an R of 0.62, an RMSE of 4.54 mg/g, and an RE of 10.3%. These results show that a multispectral image sensor can be developed to predict the total polyphenol content of tomato seedlings subjected to low-temperature stress, paving the way for energy saving and low-temperature stress damage prevention in vegetable seedling production.
利用高光谱成像技术预测低温胁迫下番茄幼苗的总多酚含量,为多光谱图像传感器的开发提供依据。采用商业带通滤波器,将光谱数据的半峰全宽(FWHM)合并为 5nm、10nm、25nm 和 50nm。利用排列重要性方法和回归系数,分别设定每个 FWHM 的波段数为≥11、≤10 和≤5,建立最小绝对值收缩和选择算子(Lasso)回归模型。使用 FWHM 为 5nm 的 56 个波段的回归模型,其 R 为 0.71、RMSE 为 3.99mg/g 和 RE 为 9.04%,而使用 FWHM 为 25nm 的 5 个波段(519.5nm、620.1nm、660.3nm、719.8nm 和 980.3nm)的光谱数据建立的模型,其 R 为 0.62、RMSE 为 4.54mg/g 和 RE 为 10.3%。结果表明,可以开发多光谱图像传感器来预测低温胁迫下番茄幼苗的总多酚含量,为蔬菜幼苗生产中的节能和低温胁迫损伤预防铺平道路。