Özdemir Kamer, Kömeç Mutlu Ahu
Civil Engineering Department, Gebze Technical University, 41400 Kocaeli, Turkey.
Sensors (Basel). 2024 Jun 30;24(13):4269. doi: 10.3390/s24134269.
With the growing demand for infrastructure and transportation facilities, the need for advanced structural health monitoring (SHM) systems is critical. This study introduces two innovative, cost-effective, standalone, and open-source data acquisition devices designed to enhance SHM through the latest sensing technologies. The first device, termed CEDAS_acc, integrates the ADXL355 MEMS accelerometer with a RaspberryPi mini-computer, ideal for measuring strong ground motions and assessing structural modal properties during forced vibration tests and structural monitoring of mid-rise buildings. The second device, CEDAS_geo, incorporates the SM24 geophone sensor with a Raspberry Pi, designed for weak ground motion measurements, making it suitable for seismograph networks, seismological research, and early warning systems. Both devices function as acceleration/velocity Data Acquisition Systems (DAS) and standalone data loggers, featuring hardware components such as a single-board mini-computer, sensors, Analog-to-Digital Converters (ADCs), and micro-SD cards housed in protective casings. The CEDAS_acc includes a triaxial MEMS accelerometer with three ADCs, while the CEDAS_geo uses horizontal and vertical geophone elements with an ADC board. To validate these devices, rigorous tests were conducted. Offset Test, conducted by placing the sensor on a leveled flat surface in six orientations, demonstrating the accelerometer's ability to provide accurate measurements using gravity as a reference; Frequency Response Test, performed at the Gebze Technical University Earthquake and Structure Laboratory (GTU-ESL), comparing the devices' responses to the GURALP-5TDE reference sensor, with CEDAS_acc evaluated on a shaking table and CEDAS_geo's performance assessed using ambient vibration records; and Noise Test, executed in a low-noise rural area to determine the intrinsic noise of CEDAS_geo, showing its capability to capture vibrations lower than ambient noise levels. Further field tests were conducted on a 10-story reinforced concrete building in Gaziantep, Turkey, instrumented with 8 CEDAS_acc and 1 CEDAS_geo devices. The building's response to a magnitude 3.2 earthquake and ambient vibrations was analyzed, comparing results to the GURALP-5TDE reference sensors and demonstrating the devices' accuracy in capturing peak accelerations and modal frequencies with minimal deviations. The study also introduced the Record Analyzer (RECANA) web application for managing data analysis on CEDAS devices, supporting various data formats, and providing tools for filtering, calibrating, and exporting data. This comprehensive study presents valuable, practical solutions for SHM, enhancing accessibility, reliability, and efficiency in structural and seismic monitoring applications and offering robust alternatives to traditional, costlier systems.
随着对基础设施和交通设施需求的不断增长,先进的结构健康监测(SHM)系统变得至关重要。本研究介绍了两种创新的、具有成本效益的、独立的开源数据采集设备,旨在通过最新传感技术增强结构健康监测。第一种设备称为CEDAS_acc,它将ADXL355 MEMS加速度计与RaspberryPi微型计算机集成在一起,非常适合在中高层建筑的强迫振动测试和结构监测期间测量强烈地面运动并评估结构模态特性。第二种设备CEDAS_geo,将SM24地震检波器传感器与Raspberry Pi相结合,设计用于测量微弱地面运动,适用于地震仪网络、地震学研究和预警系统。这两种设备都用作加速度/速度数据采集系统(DAS)和独立数据记录器,其硬件组件包括单板微型计算机、传感器、模数转换器(ADC)和置于保护壳中的微型SD卡。CEDAS_acc包括一个带有三个ADC的三轴MEMS加速度计,而CEDAS_geo使用带有ADC板的水平和垂直地震检波器元件。为了验证这些设备,进行了严格的测试。偏移测试通过将传感器以六种方向放置在水平平面上来进行,展示了加速度计以重力为参考提供准确测量的能力;频率响应测试在 Gebze 技术大学地震与结构实验室(GTU-ESL)进行,将设备的响应与GURALP-5TDE参考传感器进行比较,CEDAS_acc在振动台上进行评估,CEDAS_geo的性能使用环境振动记录进行评估;噪声测试在低噪声农村地区进行,以确定CEDAS_geo的固有噪声,表明其能够捕获低于环境噪声水平的振动。在土耳其加济安泰普的一座10层钢筋混凝土建筑上进行了进一步的现场测试,该建筑安装了8个CEDAS_acc和1个CEDAS_geo设备。分析了该建筑对3.2级地震和环境振动的响应,将结果与GURALP-5TDE参考传感器进行比较,并证明了这些设备在捕获峰值加速度和模态频率方面具有最小偏差的准确性。该研究还引入了记录分析仪(RECANA)网络应用程序,用于管理CEDAS设备上的数据分析,支持各种数据格式,并提供用于过滤、校准和导出数据的工具。这项全面的研究为结构健康监测提供了有价值且实用的解决方案,提高了结构和地震监测应用中的可及性、可靠性和效率,并为传统成本更高的系统提供了强大的替代方案。