Department of Electrical Engineering, École de Technologie Supérieure, Université du Québec, Montréal, QC H3C 1K3, Canada.
Centre for Study and Treatment of Circadian Rhythms, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, QC H4H 1R3, Canada.
Sensors (Basel). 2024 Jul 3;24(13):4317. doi: 10.3390/s24134317.
Sleep disorders can have harmful consequences in both the short and long term. They can lead to attention deficits, as well as cardiac, neurological and behavioral repercussions. One of the most widely used methods for assessing sleep disorders is polysomnography (PSG). A major challenge associated with this method is all the cables needed to connect the recording devices, making the examination more intrusive and usually requiring a clinical environment. This can have potential consequences on the test results and their accuracy. One simple way to assess the state of the central nervous system (CNS), a well-known indicator of sleep disorder, could be the use of a portable medical device. With this in mind, we implemented a simple model using both the RR interval (RRI) and its second derivative to accurately predict the awake and napping states of a subject using a feature classification model. For training and validation, we used a database providing measurements from nine healthy young adults (six men and three women), in which heart rate variability (HRV) associated with light-on, light-off, sleep onset and sleep offset events. Results show that using a 30 min RRI time series window suffices for this lightweight model to accurately predict whether the patient was awake or napping.
睡眠障碍无论在短期还是长期都会产生有害影响。它们会导致注意力缺陷,以及心脏、神经和行为方面的后果。评估睡眠障碍最常用的方法之一是多导睡眠图(PSG)。该方法的一个主要挑战是连接记录设备所需的所有电缆,这使得检查更具侵入性,通常需要在临床环境下进行。这可能会对测试结果及其准确性产生潜在影响。评估中枢神经系统(CNS)状态的一种简单方法是使用便携式医疗设备,它是睡眠障碍的一个众所周知的指标。有鉴于此,我们使用 RR 间隔(RRI)及其二阶导数实施了一个简单的模型,使用特征分类模型准确预测对象的清醒和小睡状态。在训练和验证过程中,我们使用了一个数据库,该数据库提供了九名健康年轻成年人(六名男性和三名女性)的测量数据,其中包括与灯开、灯关、睡眠开始和睡眠结束事件相关的心率变异性(HRV)。结果表明,使用 30 分钟的 RRI 时间序列窗口足以使这个轻量级模型准确预测患者是清醒还是小睡。