Suppr超能文献

重新定义准确性:不规则光照场景下的水下深度估计

Redefining Accuracy: Underwater Depth Estimation for Irregular Illumination Scenes.

作者信息

Liu Tong, Zhang Sainan, Yu Zhibin

机构信息

Key Laboratory of Ocean Observation and Information of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China.

Faculty of Information Science and Engineering, Ocean University of China, Qingdao 266100, China.

出版信息

Sensors (Basel). 2024 Jul 4;24(13):4353. doi: 10.3390/s24134353.

Abstract

Acquiring underwater depth maps is essential as they provide indispensable three-dimensional spatial information for visualizing the underwater environment. These depth maps serve various purposes, including underwater navigation, environmental monitoring, and resource exploration. While most of the current depth estimation methods can work well in ideal underwater environments with homogeneous illumination, few consider the risk caused by irregular illumination, which is common in practical underwater environments. On the one hand, underwater environments with low-light conditions can reduce image contrast. The reduction brings challenges to depth estimation models in accurately differentiating among objects. On the other hand, overexposure caused by reflection or artificial illumination can degrade the textures of underwater objects, which is crucial to geometric constraints between frames. To address the above issues, we propose an underwater self-supervised monocular depth estimation network integrating image enhancement and auxiliary depth information. We use the Monte Carlo image enhancement module (MC-IEM) to tackle the inherent uncertainty in low-light underwater images through probabilistic estimation. When pixel values are enhanced, object recognition becomes more accessible, allowing for a more precise acquisition of distance information and thus resulting in more accurate depth estimation. Next, we extract additional geometric features through transfer learning, infusing prior knowledge from a supervised large-scale model into a self-supervised depth estimation network to refine loss functions and a depth network to address the overexposure issue. We conduct experiments with two public datasets, which exhibited superior performance compared to existing approaches in underwater depth estimation.

摘要

获取水下深度图至关重要,因为它们为水下环境可视化提供了不可或缺的三维空间信息。这些深度图有多种用途,包括水下导航、环境监测和资源勘探。虽然目前大多数深度估计方法在光照均匀的理想水下环境中能很好地工作,但很少有方法考虑到实际水下环境中常见的不规则光照所带来的风险。一方面,低光照条件下的水下环境会降低图像对比度。这种降低给深度估计模型准确区分物体带来了挑战。另一方面,由反射或人工照明导致的过度曝光会使水下物体的纹理退化,而纹理对于帧间几何约束至关重要。为了解决上述问题,我们提出了一种集成图像增强和辅助深度信息的水下自监督单目深度估计网络。我们使用蒙特卡洛图像增强模块(MC-IEM)通过概率估计来处理低光照水下图像中的固有不确定性。当像素值增强时,物体识别变得更容易,从而能够更精确地获取距离信息,进而实现更准确的深度估计。接下来,我们通过迁移学习提取额外的几何特征,将来自有监督大规模模型的先验知识注入到自监督深度估计网络中,以优化损失函数和深度网络,从而解决过度曝光问题。我们使用两个公共数据集进行实验,结果表明在水下深度估计方面,我们的方法比现有方法具有更优的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验