文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于暗通道先验的单幅图像去雾。

Single Image Haze Removal Using Dark Channel Prior.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2011 Dec;33(12):2341-53. doi: 10.1109/TPAMI.2010.168. Epub 2010 Sep 9.


DOI:10.1109/TPAMI.2010.168
PMID:20820075
Abstract

In this paper, we propose a simple but effective image prior-dark channel prior to remove haze from a single input image. The dark channel prior is a kind of statistics of outdoor haze-free images. It is based on a key observation-most local patches in outdoor haze-free images contain some pixels whose intensity is very low in at least one color channel. Using this prior with the haze imaging model, we can directly estimate the thickness of the haze and recover a high-quality haze-free image. Results on a variety of hazy images demonstrate the power of the proposed prior. Moreover, a high-quality depth map can also be obtained as a byproduct of haze removal.

摘要

在本文中,我们提出了一种简单而有效的图像先验——暗通道先验,用于从单个输入图像中去除雾霾。暗通道先验是一种户外无雾图像的统计信息。它基于一个关键观察——大多数户外无雾图像的局部斑块都包含一些像素,这些像素在至少一个颜色通道中的强度非常低。利用这一先验和雾霾成像模型,我们可以直接估计雾霾的厚度,并恢复出高质量的无雾霾图像。对各种雾霾图像的实验结果表明了所提出的先验的有效性。此外,去除雾霾还可以作为副产品得到高质量的深度图。

相似文献

[1]
Single Image Haze Removal Using Dark Channel Prior.

IEEE Trans Pattern Anal Mach Intell. 2010-9-9

[2]
A Fast Single Image Haze Removal Algorithm Using Color Attenuation Prior.

IEEE Trans Image Process. 2015-6-18

[3]
Haze effect removal from image via haze density estimation in optical model.

Opt Express. 2013-11-4

[4]
Edge-Preserving Decomposition-Based Single Image Haze Removal.

IEEE Trans Image Process. 2015-9-28

[5]
DehazeNet: An End-to-End System for Single Image Haze Removal.

IEEE Trans Image Process. 2016-11

[6]
Variational Single Nighttime Image Haze Removal With a Gray Haze-Line Prior.

IEEE Trans Image Process. 2022

[7]
Using Whale Optimization Algorithm and Haze Level Information in a Model-Based Image Dehazing Algorithm.

Sensors (Basel). 2023-1-10

[8]
A new Gaussian curvature of the image surface based variational model for haze or fog removal.

PLoS One. 2023

[9]
Single Image Dehazing Using Haze-Lines.

IEEE Trans Pattern Anal Mach Intell. 2020-3

[10]
Image Haze Removal Method Based on Histogram Gradient Feature Guidance.

Int J Environ Res Public Health. 2023-2-9

引用本文的文献

[1]
DFFNet: A Dual-Domain Feature Fusion Network for Single Remote Sensing Image Dehazing.

Sensors (Basel). 2025-8-18

[2]
Multi-Scale Image Defogging Network Based on Cauchy Inverse Cumulative Function Hybrid Distribution Deformation Convolution.

Sensors (Basel). 2025-8-15

[3]
Underwater image enhancement using hybrid transformers and evolutionary particle swarm optimization.

Sci Rep. 2025-8-12

[4]
Image dehazing algorithm based on deep transfer learning and local mean adaptation.

Sci Rep. 2025-7-31

[5]
YOLO-Extreme: Obstacle Detection for Visually Impaired Navigation Under Foggy Weather.

Sensors (Basel). 2025-7-11

[6]
Lightweight underwater object detection method based on multi-scale edge information selection.

Sci Rep. 2025-7-29

[7]
Underwater image dehazing using a hybrid GAN with bottleneck attention and improved Retinex-based optimization.

Sci Rep. 2025-7-18

[8]
A diffusion model for universal medical image enhancement.

Commun Med (Lond). 2025-7-15

[9]
MCRFS-Net: single image dehazing based on multi-scale contrastive regularization and frequency selection.

Sci Rep. 2025-7-15

[10]
An Adaptive Brightness Global Digital Image Correlation Method for Deformation Measurement Using Overexposed Images.

Sensors (Basel). 2025-6-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索