Subramani Jothimani, Kumar G Sathish, Gadekallu Thippa Reddy
Department of Information Technology, Bannari Amman Institute of Technology, Sathyamangalam 638401, Tamil Nadu, India.
Department of Artificial Intelligence and Data Science, Sri Eshwar College of Engineering, Coimbatore 641202, Tamil Nadu, India.
Diagnostics (Basel). 2024 Jun 24;14(13):1339. doi: 10.3390/diagnostics14131339.
Systemic Lupus Erythematosus (SLE) is a multifaceted autoimmune disease that presents with a diverse array of clinical signs and unpredictable disease progression. Conventional diagnostic methods frequently fall short in terms of sensitivity and specificity, which can result in delayed diagnosis and less-than-optimal management. In this study, we introduce a novel approach for improving the identification of SLE through the use of gene-based predictive modelling and Stacked deep learning classifiers. The study proposes a new method for diagnosing SLE using Stacked Deep Learning Classifiers (SDLC) trained on Gene Expression Omnibus (GEO) database data. By combining transcriptomic data from GEO with clinical features and laboratory results, the SDLC model achieves a remarkable accuracy value of 0.996, outperforming traditional methods. Individual models within the SDLC, such as SBi-LSTM and ACNN, achieved accuracies of 92% and 95%, respectively. The SDLC's ensemble learning approach allows for identifying complex patterns in multi-modal data, enhancing accuracy in diagnosing SLE. This study emphasises the potential of deep learning methods, in conjunction with open repositories like GEO, to advance the diagnosis and management of SLE. Overall, this research shows strong performance and potential for improving precision medicine in managing SLE.
系统性红斑狼疮(SLE)是一种多方面的自身免疫性疾病,表现出各种各样的临床症状和不可预测的疾病进展。传统的诊断方法在敏感性和特异性方面常常不足,这可能导致诊断延迟和管理不够理想。在本研究中,我们引入了一种新方法,通过使用基于基因的预测模型和堆叠深度学习分类器来改进SLE的识别。该研究提出了一种使用在基因表达综合数据库(GEO)数据上训练的堆叠深度学习分类器(SDLC)来诊断SLE的新方法。通过将来自GEO的转录组数据与临床特征和实验室结果相结合,SDLC模型实现了0.996的显著准确率值,优于传统方法。SDLC中的单个模型,如SBi-LSTM和ACNN,分别实现了92%和95%的准确率。SDLC的集成学习方法能够识别多模态数据中的复杂模式,提高SLE诊断的准确性。本研究强调了深度学习方法与像GEO这样的开放存储库相结合,在推进SLE的诊断和管理方面的潜力。总体而言,这项研究在改善SLE管理中的精准医学方面表现出强大的性能和潜力。