文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于机器学习的系统性红斑狼疮女性患者肠道微生物组特征及潜在生物标志物鉴定。

Gut microbiota landscape and potential biomarker identification in female patients with systemic lupus erythematosus using machine learning.

机构信息

School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China.

Department of Nephrology, Shanxi Provincial People's Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China.

出版信息

Front Cell Infect Microbiol. 2023 Dec 19;13:1289124. doi: 10.3389/fcimb.2023.1289124. eCollection 2023.


DOI:10.3389/fcimb.2023.1289124
PMID:38169617
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10758415/
Abstract

OBJECTIVES: Systemic Lupus Erythematosus (SLE) is a complex autoimmune disease that disproportionately affects women. Early diagnosis and prevention are crucial for women's health, and the gut microbiota has been found to be strongly associated with SLE. This study aimed to identify potential biomarkers for SLE by characterizing the gut microbiota landscape using feature selection and exploring the use of machine learning (ML) algorithms with significantly dysregulated microbiotas (SDMs) for early identification of SLE patients. Additionally, we used the SHapley Additive exPlanations (SHAP) interpretability framework to visualize the impact of SDMs on the risk of developing SLE in females. METHODS: Stool samples were collected from 54 SLE patients and 55 Negative Controls (NC) for microbiota analysis using 16S rRNA sequencing. Feature selection was performed using Elastic Net and Boruta on species-level taxonomy. Subsequently, four ML algorithms, namely logistic regression (LR), Adaptive Boosting (AdaBoost), Random Forest (RF), and eXtreme gradient boosting (XGBoost), were used to achieve early identification of SLE with SDMs. Finally, the best-performing algorithm was combined with SHAP to explore how SDMs affect the risk of developing SLE in females. RESULTS: Both alpha and beta diversity were found to be different in SLE group. Following feature selection, 68 and 21 microbiota were retained in Elastic Net and Boruta, respectively, with 16 microbiota overlapping between the two, i.e., SDMs for SLE. The four ML algorithms with SDMs could effectively identify SLE patients, with XGBoost performing the best, achieving Accuracy, Sensitivity, Specificity, Positive Predictive Value, Negative Predictive Value, and AUC values of 0.844, 0.750, 0.938, 0.923, 0.790, and 0.930, respectively. The SHAP interpretability framework showed a complex non-linear relationship between the relative abundance of SDMs and the risk of SLE, with having the largest SHAP value. CONCLUSIONS: This study revealed dysbiosis in the gut microbiota of female SLE patients. ML classifiers combined with SDMs can facilitate early identification of female patients with SLE, particularly XGBoost. The SHAP interpretability framework provides insight into the impact of SDMs on the risk of SLE and may inform future scientific treatment for SLE.

摘要

目的:系统性红斑狼疮(SLE)是一种复杂的自身免疫性疾病,女性发病率明显更高。早期诊断和预防对女性健康至关重要,而肠道微生物群已被发现与 SLE 密切相关。本研究旨在通过特征选择描述肠道微生物群景观,探索使用机器学习(ML)算法识别具有显著失调微生物群(SDM)的 SLE 患者,从而识别 SLE 的潜在生物标志物。此外,我们使用 SHapley Additive exPlanations(SHAP)可解释性框架来可视化 SDM 对女性 SLE 发病风险的影响。

方法:采用 16S rRNA 测序对 54 名 SLE 患者和 55 名阴性对照(NC)的粪便样本进行微生物组分析。在物种分类水平上使用弹性网络和 Boruta 进行特征选择。随后,使用逻辑回归(LR)、自适应增强(AdaBoost)、随机森林(RF)和极端梯度提升(XGBoost)这四种 ML 算法来实现使用 SDM 对 SLE 的早期识别。最后,将表现最佳的算法与 SHAP 结合,以探讨 SDM 如何影响女性 SLE 发病风险。

结果:SLE 组的 alpha 和 beta 多样性均存在差异。在特征选择后,在弹性网络和 Boruta 中分别保留了 68 和 21 个微生物组,其中有 16 个微生物组重叠,即 SLE 的 SDM。使用 SDM 的四种 ML 算法可以有效地识别 SLE 患者,其中 XGBoost 的表现最佳,其准确性、敏感度、特异度、阳性预测值、阴性预测值和 AUC 值分别为 0.844、0.750、0.938、0.923、0.790 和 0.930。SHAP 可解释性框架显示 SDM 相对丰度与 SLE 发病风险之间存在复杂的非线性关系,其中丰度最高。

结论:本研究揭示了女性 SLE 患者肠道微生物群失调。ML 分类器与 SDM 相结合可以促进女性 SLE 患者的早期识别,特别是 XGBoost。SHAP 可解释性框架提供了对 SDM 对 SLE 发病风险影响的深入了解,可能为 SLE 的未来科学治疗提供信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35e6/10758415/bc2c9d23576a/fcimb-13-1289124-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35e6/10758415/339ea0c003d5/fcimb-13-1289124-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35e6/10758415/0d21dda7e3c9/fcimb-13-1289124-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35e6/10758415/7b83b28f3e6a/fcimb-13-1289124-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35e6/10758415/0fb4e2712dba/fcimb-13-1289124-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35e6/10758415/7acfac085e7c/fcimb-13-1289124-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35e6/10758415/bc2c9d23576a/fcimb-13-1289124-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35e6/10758415/339ea0c003d5/fcimb-13-1289124-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35e6/10758415/0d21dda7e3c9/fcimb-13-1289124-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35e6/10758415/7b83b28f3e6a/fcimb-13-1289124-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35e6/10758415/0fb4e2712dba/fcimb-13-1289124-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35e6/10758415/7acfac085e7c/fcimb-13-1289124-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35e6/10758415/bc2c9d23576a/fcimb-13-1289124-g006.jpg

相似文献

[1]
Gut microbiota landscape and potential biomarker identification in female patients with systemic lupus erythematosus using machine learning.

Front Cell Infect Microbiol. 2023

[2]
XGBoost-SHAP-based interpretable diagnostic framework for alzheimer's disease.

BMC Med Inform Decis Mak. 2023-7-25

[3]
Shared gut, but distinct oral microbiota composition in primary Sjögren's syndrome and systemic lupus erythematosus.

J Autoimmun. 2018-11-9

[4]
A Distinct Plasma Microbiome But Not Gut Microbiome in Patients With Systemic Lupus Erythematosus Compared to Healthy Individuals.

J Rheumatol. 2022-6

[5]
Proton pump inhibitors induce changes in the gut microbiome composition of systemic lupus erythematosus patients.

BMC Microbiol. 2022-4-27

[6]
Disordered intestinal microbes are associated with the activity of Systemic Lupus Erythematosus.

Clin Sci (Lond). 2019-4-15

[7]
Using gut microbiota as a diagnostic tool for colorectal cancer: machine learning techniques reveal promising results.

J Med Microbiol. 2023-6

[8]
Dysbiosis of oral microbiota is associated with systemic lupus erythematosus.

Arch Oral Biol. 2020-3-14

[9]
Gut Microbiota in Human Systemic Lupus Erythematosus and a Mouse Model of Lupus.

Appl Environ Microbiol. 2018-1-31

[10]
Integrative analysis of systemic lupus erythematosus biomarkers: Role of fecal hsa-mir-223-3p and gut microbiota in transkingdom dynamics.

Mol Immunol. 2024-7

引用本文的文献

[1]
AI-driven analysis of diabetes risk determinants in U.S. adults: Exploring disease prevalence and health factors.

PLoS One. 2025-9-3

[2]
Interpretable machine learning algorithms reveal gut microbiome features associated with atopic dermatitis.

Front Immunol. 2025-5-1

[3]
Machine learning prediction of obesity-associated gut microbiota: identifying as a potential therapeutic target.

Front Microbiol. 2025-2-5

[4]
XGBoost-SHAP-based interpretable diagnostic framework for knee osteoarthritis: a population-based retrospective cohort study.

Arthritis Res Ther. 2024-12-19

本文引用的文献

[1]
Involvement of Gut Microbiota in SLE and Lupus Nephritis.

Biomedicines. 2023-2-21

[2]
Drug-target interaction prediction based on protein features, using wrapper feature selection.

Sci Rep. 2023-3-3

[3]
Gut microbiota in SLE: from animal models to clinical evidence and pharmacological perspectives.

Lupus Sci Med. 2023-2

[4]
A random forest-based metabolic risk model to assess the prognosis and metabolism-related drug targets in ovarian cancer.

Comput Biol Med. 2023-2

[5]
Landscape of intestinal microbiota in patients with IgA nephropathy, IgA vasculitis and Kawasaki disease.

Front Cell Infect Microbiol. 2022

[6]
Towards an Optimized Ensemble Feature Selection for DDoS Detection Using Both Supervised and Unsupervised Method.

Sensors (Basel). 2022-11-25

[7]
Development of an interpretable machine learning model associated with heavy metals' exposure to identify coronary heart disease among US adults via SHAP: Findings of the US NHANES from 2003 to 2018.

Chemosphere. 2023-1

[8]
Th17 cells in primary Sjögren's syndrome negatively correlate with increased and .

Front Immunol. 2022

[9]
Random forest algorithm-based classification model of pesticide aquatic toxicity to fishes.

Aquat Toxicol. 2022-10

[10]
Using random forest algorithm for glomerular and tubular injury diagnosis.

Front Med (Lausanne). 2022-7-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索