Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle, Germany.
Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), Cologne Biocenter, University of Cologne, Cologne, Germany.
Mol Plant. 2024 Aug 5;17(8):1307-1327. doi: 10.1016/j.molp.2024.07.006. Epub 2024 Jul 30.
Plant immunity is a multilayered process that includes recognition of patterns or effectors from pathogens to elicit defense responses. These include the induction of a cocktail of defense metabolites that typically restrict pathogen virulence. Here, we investigate the interaction between barley roots and the fungal pathogens Bipolaris sorokiniana (Bs) and Fusarium graminearum (Fg) at the metabolite level. We identify hordedanes, a previously undescribed set of labdane-related diterpenoids with antimicrobial properties, as critical players in these interactions. Infection of barley roots by Bs and Fg elicits hordedane synthesis from a 600-kb gene cluster. Heterologous reconstruction of the biosynthesis pathway in yeast and Nicotiana benthamiana produced several hordedanes, including one of the most functionally decorated products 19-β-hydroxy-hordetrienoic acid (19-OH-HTA). Barley mutants in the diterpene synthase genes of this cluster are unable to produce hordedanes but, unexpectedly, show reduced Bs colonization. By contrast, colonization by Fusarium graminearum, another fungal pathogen of barley and wheat, is 4-fold higher in the mutants completely lacking hordedanes. Accordingly, 19-OH-HTA enhances both germination and growth of Bs, whereas it inhibits other pathogenic fungi, including Fg. Analysis of microscopy and transcriptomics data suggest that hordedanes delay the necrotrophic phase of Bs. Taken together, these results show that adapted pathogens such as Bs can subvert plant metabolic defenses to facilitate root colonization.
植物免疫是一个多层次的过程,包括识别病原体的模式或效应子,以引发防御反应。这些反应包括诱导防御代谢物的混合物,这些代谢物通常会限制病原体的毒力。在这里,我们在代谢物水平上研究了大麦根与真菌病原体双极镰刀菌(Bs)和禾谷镰刀菌(Fg)之间的相互作用。我们确定了 hordedanes,这是一组以前未被描述的具有抗菌特性的 labdane 相关二萜类化合物,是这些相互作用的关键参与者。Bs 和 Fg 感染大麦根会从一个 600kb 的基因簇中引发 hordedane 的合成。在酵母和黄花烟中异源重建生物合成途径产生了几种 hordedanes,包括一种功能修饰最多的产物 19-β-羟基-hordetrienoic acid (19-OH-HTA)。该基因簇中二萜合酶基因的大麦突变体无法产生 hordedanes,但出人意料的是,它们对 Bs 的定殖减少。相比之下,另一种大麦和小麦的真菌病原体禾谷镰刀菌在完全缺乏 hordedanes 的突变体中的定殖增加了 4 倍。因此,19-OH-HTA 增强了 Bs 的萌发和生长,而抑制了其他致病性真菌,包括 Fg。显微镜和转录组学数据分析表明,hordedanes 延缓了 Bs 的坏死阶段。总之,这些结果表明,适应的病原体,如 Bs,可以破坏植物的代谢防御机制,以促进根的定殖。