Suppr超能文献

利用废弃菌棒生物炭负载希瓦氏菌强化去除水系统中的抗生素和重金属

Enhanced removal of antibiotics and heavy metals in aquatic systems using spent mushroom substrate-derived biochar integrated with Herbaspirillum huttiense.

机构信息

Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China.

National-Local Joint Engineering Laboratory of Contaminated Soil Remediation By Bio-Physicochemical Synergistic Process, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China.

出版信息

Environ Sci Pollut Res Int. 2024 Jul;31(35):47674-47689. doi: 10.1007/s11356-024-34192-y. Epub 2024 Jul 13.

Abstract

A novel integrated removal strategy was developed to enhance the concurrent elimination of copper (Cu), zinc (Zn), oxytetracycline (OTC), and enrofloxacin (ENR) from the aqueous environments. The underlying adsorption mechanisms of spent mushroom substrate (SMSB) and the Herbaspirillum huttiense strain (HHS1), and their efficacy in removing Cu, Zn, OTC, and ENR was also examined. Results showed that the SMSB-HHS1 composite stabilized 29.86% of Cu and 49.75% of Zn and achieved removal rates of 97.95% for OTC and 59.35% for ENR through a combination of chemisorption and biodegradation. Zinc did not affect Cu adsorption, and ENR did not impact the adsorption of OTC on SMSB. However, the co-presence of OTC and ENR modified the adsorption behaviors of both Cu and Zn. Copper and Zn enhanced the adsorption of OTC and ENR by serving as bridging agents, facilitating the interaction between the contaminants and SMSB. Conversely, OTC and ENR inhibited the adsorption process of Cu by obstructing its interaction with the SMSB and occupying the oxygen-containing functional groups. The ‒OH (3415 cm) and C-O-C (1059 cm) functional groups were identified as the principal active sites to form hydrogen bonds and interact with Cu and Zn, leading to the formation of CuPO and ZnCO(OH)HO. HHS1 also enhanced antibiotic removal through biodegradation, as evidenced by the decrease of ‒C‒O and increase of ‒C = O groups. This study underscores the innovative potential of the SMSB-HHS1 composite, offering a sustainable approach to addressing multifaceted pollution challenges in the aquatic environments.

摘要

开发了一种新颖的集成去除策略,以增强从水相环境中同时去除铜(Cu)、锌(Zn)、土霉素(OTC)和恩诺沙星(ENR)的能力。还研究了废弃蘑菇基质(SMSB)和 Herbaspirillum huttiense 菌株(HHS1)的吸附机制及其去除 Cu、Zn、OTC 和 ENR 的效果。结果表明,SMSB-HHS1 复合材料稳定了 29.86%的 Cu 和 49.75%的 Zn,并通过化学吸附和生物降解的组合,实现了 97.95%的 OTC 和 59.35%的 ENR 的去除率。Zn 不影响 Cu 的吸附,ENR 不影响 OTC 在 SMSB 上的吸附。然而,OTC 和 ENR 的共存改变了 Cu 和 Zn 的吸附行为。Cu 和 Zn 作为桥联剂增强了 OTC 和 ENR 的吸附,促进了污染物与 SMSB 之间的相互作用。相反,OTC 和 ENR 通过阻碍其与 SMSB 的相互作用并占据含氧官能团,抑制了 Cu 的吸附过程。-OH(3415 cm)和 C-O-C(1059 cm)官能团被确定为形成氢键和与 Cu 和 Zn 相互作用的主要活性位点,导致 CuPO 和 ZnCO(OH)HO 的形成。HHS1 还通过生物降解增强了抗生素的去除,这可以从-C-O 和-C=O 基团的减少和增加得到证明。本研究强调了 SMSB-HHS1 复合材料的创新潜力,为解决水相环境中多方面的污染挑战提供了一种可持续的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验