Suppr超能文献

3D 移动回归视觉Transformer 用于急性缺血性脑卒中侧支成像。

3D mobile regression vision transformer for collateral imaging in acute ischemic stroke.

机构信息

School of Electrical and Electronic Engineering, Korea University, Seoul, Republic of Korea.

Department of Radiology, St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Daejeon, Republic of Korea.

出版信息

Int J Comput Assist Radiol Surg. 2024 Oct;19(10):2043-2054. doi: 10.1007/s11548-024-03229-5. Epub 2024 Jul 13.

Abstract

PURPOSE

The accurate and timely assessment of the collateral perfusion status is crucial in the diagnosis and treatment of patients with acute ischemic stroke. Previous works have shown that collateral imaging, derived from CT angiography, MR perfusion, and MR angiography, aids in evaluating the collateral status. However, such methods are time-consuming and/or sub-optimal due to the nature of manual processing and heuristics. Recently, deep learning approaches have shown to be promising for generating collateral imaging. These, however, suffer from the computational complexity and cost.

METHODS

In this study, we propose a mobile, lightweight deep regression neural network for collateral imaging in acute ischemic stroke, leveraging dynamic susceptibility contrast MR perfusion (DSC-MRP). Built based upon lightweight convolution and Transformer architectures, the proposed model manages the balance between the model complexity and performance.

RESULTS

We evaluated the performance of the proposed model in generating the five-phase collateral maps, including arterial, capillary, early venous, late venous, and delayed phases, using DSC-MRP from 952 patients. In comparison with various deep learning models, the proposed method was superior to the competitors with similar complexity and was comparable to the competitors of high complexity.

CONCLUSION

The results suggest that the proposed model is able to facilitate rapid and precise assessment of the collateral status of patients with acute ischemic stroke, leading to improved patient care and outcome.

摘要

目的

准确、及时地评估侧支循环灌注状态对于急性缺血性脑卒中患者的诊断和治疗至关重要。先前的研究表明,基于 CT 血管造影、MR 灌注和 MR 血管造影的侧支成像有助于评估侧支状态。然而,由于手动处理和启发式方法的性质,这些方法耗时且/或效果不佳。最近,深度学习方法在生成侧支成像方面显示出很大的潜力。然而,这些方法存在计算复杂度和成本高的问题。

方法

在这项研究中,我们提出了一种用于急性缺血性脑卒中侧支成像的移动、轻量级深度回归神经网络,利用动态磁敏感对比 MR 灌注(DSC-MRP)。该模型基于轻量级卷积和 Transformer 架构构建,在模型复杂度和性能之间取得了平衡。

结果

我们使用 952 名患者的 DSC-MRP 评估了该模型生成 5 期侧支图(包括动脉期、毛细血管期、早期静脉期、晚期静脉期和延迟期)的性能。与各种深度学习模型相比,该方法在具有相似复杂度的竞争对手中表现优异,与复杂度较高的竞争对手相当。

结论

结果表明,该模型能够快速、准确地评估急性缺血性脑卒中患者的侧支状态,从而改善患者的治疗效果和预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/baa2/11442547/125abe05cd40/11548_2024_3229_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验