Departament d'Enginyeria Civil i Ambiental, Universitat Politècnica de Catalunya (UPC), Barcelona, 08034, Spain; International Center for Numerical Methods in Engineering (CIMNE), Barcelona, 08034, Spain.
Departament de Resistència de Materials i Estructures a l'Enginyeria, Universitat Politècnica de Catalunya (UPC), Barcelona, 08034, Spain; International Center for Numerical Methods in Engineering (CIMNE), Barcelona, 08034, Spain; Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica, Expresión Gráfica en la Ingeniería, Ingeniería Cartográfica, Geodésica y Fotogrametría, Ingeniería Mecánica e Ingeniería de los Procesos de Fabricación, Universidad de Valladolid (UVA), Valladolid, 47011, Spain.
Comput Biol Med. 2024 Sep;179:108832. doi: 10.1016/j.compbiomed.2024.108832. Epub 2024 Jul 12.
In this work we present a novel methodology for the numerical simulation of patient-specific aortic dissections. Our proposal, which targets the seamless virtual prototyping of customized scenarios, combines an innovative two-step segmentation procedure with a CutFEM technique capable of dealing with thin-walled bodies such as the intimal flap. First, we generate the fluid mesh from the outer aortic wall disregarding the intimal flap, similarly to what would be done in a healthy aorta. Second, we create a surface mesh from the approximate midline of the intimal flap. This approach allows us to decouple the segmentation of the fluid volume from that of the intimal flap, thereby bypassing the need to create a volumetric mesh around a thin-walled body, an operation widely known to be complex and error-prone. Once the two meshes are obtained, the original configuration of the dissection into true and false lumen is recovered by embedding the surface mesh into the volumetric one and calculating a level set function that implicitly represents the intimal flap in terms of the volumetric mesh entities. We then leverage the capabilities of unfitted mesh methods, specifically relying on a CutFEM technique tailored for thin-walled bodies, to impose the wall boundary conditions over the embedded intimal flap. We tested the method by simulating the flow in four patient-specific aortic dissections, all involving intricate geometrical patterns. In all cases, the preprocess is greatly simplified with no impact on the computational times. Additionally, the obtained results are consistent with clinical evidence and previous research.
在这项工作中,我们提出了一种新颖的方法,用于对特定于患者的主动脉夹层进行数值模拟。我们的提案旨在实现定制场景的无缝虚拟原型设计,它结合了一种创新的两步分割过程和一种能够处理像内膜瓣这样的薄壁体的 CutFEM 技术。首先,我们从忽略内膜瓣的主动脉外管壁生成流体质网格,这与在健康主动脉中所做的类似。其次,我们从内膜瓣的近似中线创建一个表面网格。这种方法允许我们将流体积的分割与内膜瓣的分割分离,从而避免了在薄壁体周围创建体积网格的需要,这是一项众所周知的复杂且容易出错的操作。一旦获得了这两个网格,就可以通过将表面网格嵌入体积网格并计算一个水平集函数来恢复夹层的原始真腔和假腔配置,该函数隐式地用体积网格实体表示内膜瓣。然后,我们利用非适配网格方法的功能,特别是依赖于专门针对薄壁体的 CutFEM 技术,在嵌入的内膜瓣上施加壁边界条件。我们通过模拟四个特定于患者的主动脉夹层中的流动来测试该方法,所有这些夹层都涉及复杂的几何图案。在所有情况下,预处理都大大简化,而不会影响计算时间。此外,所得到的结果与临床证据和以前的研究一致。