School of Data Science and Artificial Intelligence, Wenzhou University of Technology, 325027 Wenzhou, China.
Guangzhou Xinhua University, 510520 Guangzhou, China.
Int J Biol Macromol. 2024 Sep;276(Pt 2):133825. doi: 10.1016/j.ijbiomac.2024.133825. Epub 2024 Jul 11.
Predicting compound-induced inhibition of cardiac ion channels is crucial and challenging, significantly impacting cardiac drug efficacy and safety assessments. Despite the development of various computational methods for compound-induced inhibition prediction in cardiac ion channels, their performance remains limited. Most methods struggle to fuse multi-source data, relying solely on specific dataset training, leading to poor accuracy and generalization. We introduce MultiCBlo, a model that fuses multimodal information through a progressive learning approach, designed to predict compound-induced inhibition of cardiac ion channels with high accuracy. MultiCBlo employs progressive multimodal information fusion technology to integrate the compound's SMILES sequence, graph structure, and fingerprint, enhancing its representation. This is the first application of progressive multimodal learning for predicting compound-induced inhibition of cardiac ion channels, to our knowledge. The objective of this study was to predict the compound-induced inhibition of three major cardiac ion channels: hERG, Cav1.2, and Nav1.5. The results indicate that MultiCBlo significantly outperforms current models in predicting compound-induced inhibition of cardiac ion channels. We hope that MultiCBlo will facilitate cardiac drug development and reduce compound toxicity risks. Code and data are accessible at: https://github.com/taowang11/MultiCBlo. The online prediction platform is freely accessible at: https://huggingface.co/spaces/wtttt/PCICB.
预测化合物对心脏离子通道的抑制作用至关重要且极具挑战性,这对心脏药物的疗效和安全性评估有重大影响。尽管已经开发出各种用于预测化合物对心脏离子通道抑制作用的计算方法,但它们的性能仍然有限。大多数方法难以融合多源数据,仅依靠特定数据集进行训练,导致准确性和泛化能力较差。我们引入了 MultiCBlo,这是一种通过渐进式学习方法融合多模态信息的模型,旨在以高精度预测化合物对心脏离子通道的抑制作用。MultiCBlo 采用渐进式多模态信息融合技术,整合化合物的 SMILES 序列、图结构和指纹,增强其表示能力。据我们所知,这是渐进式多模态学习首次应用于预测化合物对心脏离子通道的抑制作用。本研究的目的是预测三种主要心脏离子通道(hERG、Cav1.2 和 Nav1.5)的化合物诱导抑制作用。结果表明,MultiCBlo 在预测化合物对心脏离子通道的抑制作用方面明显优于现有模型。我们希望 MultiCBlo 将有助于心脏药物的开发并降低化合物毒性风险。代码和数据可在:https://github.com/taowang11/MultiCBlo 获得。在线预测平台可在:https://huggingface.co/spaces/wtttt/PCICB 免费访问。