Suppr超能文献

用锇配合物催化剂功能化的硅光电阴极用于将CO选择性催化转化为甲烷。

Silicon photocathode functionalized with osmium complex catalyst for selective catalytic conversion of CO to methane.

作者信息

Li Xing-Yi, Zhu Ze-Lin, Dagnaw Fentahun Wondu, Yu Jie-Rong, Wu Zhi-Xing, Chen Yi-Jing, Zhou Mu-Han, Wang Tieyu, Tong Qing-Xiao, Jian Jing-Xin

机构信息

Department of Chemistry, Shantou University, Shantou, 515063, PR China.

Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, 515063, PR China.

出版信息

Nat Commun. 2024 Jul 13;15(1):5882. doi: 10.1038/s41467-024-50244-w.

Abstract

Solar-driven CO reduction to yield high-value chemicals presents an appealing avenue for combating climate change, yet achieving selective production of specific products remains a significant challenge. We showcase two osmium complexes, przpOs, and trzpOs, as CO reduction catalysts for selective CO-to-methane conversion. Kinetically, the przpOs and trzpOs exhibit high CO reduction catalytic rate constants of 0.544 and 6.41 s, respectively. Under AM1.5 G irradiation, the optimal Si/TiO/trzpOs have CH as the main product and >90% Faradaic efficiency, reaching -14.11 mA cm photocurrent density at 0.0 V. Density functional theory calculations reveal that the N atoms on the bipyrazole and triazole ligands effectively stabilize the CO-adduct intermediates, which tend to be further hydrogenated to produce CH, leading to their ultrahigh CO-to-CH selectivity. These results are comparable to cutting-edge Si-based photocathodes for CO reduction, revealing a vast research potential in employing molecular catalysts for the photoelectrochemical conversion of CO to methane.

摘要

太阳能驱动的一氧化碳还原以生产高价值化学品为应对气候变化提供了一条有吸引力的途径,但实现特定产品的选择性生产仍然是一项重大挑战。我们展示了两种锇配合物,przpOs和trzpOs,作为用于选择性一氧化碳到甲烷转化的一氧化碳还原催化剂。在动力学上,przpOs和trzpOs分别表现出0.544和6.41 s的高一氧化碳还原催化速率常数。在AM1.5 G光照下,最佳的Si/TiO/trzpOs以甲烷为主要产物,法拉第效率>90%,在0.0 V时达到-14.11 mA cm的光电流密度。密度泛函理论计算表明,联吡唑和三唑配体上的氮原子有效地稳定了一氧化碳加合物中间体,这些中间体倾向于进一步氢化生成甲烷,从而导致它们具有超高的一氧化碳到甲烷选择性。这些结果与用于一氧化碳还原的前沿硅基光阴极相当,揭示了在采用分子催化剂进行一氧化碳到甲烷的光电化学转化方面的巨大研究潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef05/11246507/83e46bb76788/41467_2024_50244_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验